• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 8
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 104
  • 17
  • 16
  • 16
  • 15
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Importancia do grupo alfa-amino terminal da bradicinina e cininas relacionadas sobre o aumento da permeabilidade capilar

SUGAVARA, SUEMI 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:24:58Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:22Z (GMT). No. of bitstreams: 1 00049.pdf: 1153051 bytes, checksum: aae78f211763e10ec7bfcd3b38f09df1 (MD5) / Tese (Doutoramento) / IEA/T / Instituto de Quimica, Universidade de Sao Paulo - IQ/USP
42

Importancia do grupo alfa-amino terminal da bradicinina e cininas relacionadas sobre o aumento da permeabilidade capilar

SUGAVARA, SUEMI 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:24:58Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:02:22Z (GMT). No. of bitstreams: 1 00049.pdf: 1153051 bytes, checksum: aae78f211763e10ec7bfcd3b38f09df1 (MD5) / Tese (Doutoramento) / IEA/T / Instituto de Quimica, Universidade de Sao Paulo - IQ/USP
43

A Method For Three Dimensional Modelling Of Polypeptide Chains

Das, Ujjwal Kumar 07 1900 (has links) (PDF)
No description available.
44

Chemoselective modifications of recombinant elastin-like polypeptides : tuning thermosensitivity and bioactivity / Modifications chimiosélectives de polypeptides recombinant à base de motifs élastine : modulation de la thermosensibilité et de l'activité biologique

Petitdemange, Rosine 12 December 2016 (has links)
La thèse présentée porte sur la préparation de dérivés de polypeptides recombinant à base de motifs élastine (ELPs) ainsi que sur l'étude de leurs propriétés physicochimiques et biologiques. Des ELPs contenant des résidus méthionine ont été modifiés de manière chimiosélective soit en utilisant des halogénures d'alkyle ou différents époxydes, soit par oxydation des résidus méthionine. La caractérisation par RMN et par spectrométrie de masse des composés obtenus a permis de confirmer leur fonctionnalisation quantitative. L'étude de la réponse en température de ces dérivés d'ELP par des mesures de turbidité ou par des mesures de diffusion de la lumière a montré le fort impact des modifications entreprises sur la température de transition (TI) des ELPs. Il a également été montré que la n peut être modifiée par échange des contre-ions des dérivés cationiques. Enfin, des monosaccharides ont été conjugué aux ELPs contenant des groupements alcyne par cycloaddition de Huisg en afin d'obtenir des glycopolypeptides. Les propriétés thermosensibles ainsi que les propriétés biologiques de ces conjugués ont été testées et ces dernières ont permis de montrer leur capacité à se lier sélectivement à des lectines. Leur utilisation pour trier des protéines d'intérêt et les redisperser est finalement évaluée de façon préliminaire. / This thesis describes the preparation of elastin-like polypeptides (ELPs) derivatives and the study of their physico-chemical and biological properties. Methionine-containing ELPs were chemoselectively modified using either alkyl halides or epoxides or by oxidation of their methionine residues. The successful functionalization was assessed by NMR and mass spectrometry analysis of the resulting compounds. The thermoresponsive properties of these ELP derivatives were evaluated either by light scattering or by turbidity measurements showing the strong effect of these modifications on the ELPs transition temperature (TI). The counterion affect on the thermosensitivity of the polycationic derivatives was also studied. The synthesis of ELP glycopolypeptides was finally achieved by conjugating monosaccharides to the ELP alkyne derivatives through Huisgens cycloaddition. Along with the thermoresponsive properties, the bioactivity of the ELP glycoconjugates was studied and proved their ability to specifically bind lectins. Their use for protein sorting and release was preliminary evidenced.
45

Computational studies of the folding patterns of small and medium-size polypeptides

Mokoena, Paul January 2010 (has links)
Submitted in partial fulfilment for the Degree of Doctor of Technology: Biotechnology, Durban University of Technology, 2010. / This study involved a series of molecular dynamics (MD) simulations applied to case studies of small and medium-size polypeptides to assess the thermodynamics of their folding characteristics. Peptide folding is a complex and vital phenomenon taking place in all living systems. Bioactive conformational structures of folded peptides need to be well characterized before using them in computer-aided drug design. The computational procedure was validated on the 10-residue long chignolin-like synthetic mini-protein (CLN025). For this peptide, replica exchange molecular dynamics (REMD) calculations were carried out in explicit and implicit solvents using the generalized Born (GB)/surface area (SA) approximation with different sets of force field parameters. Following this validation procedure, case studies of the folding conformations of peptides of different lengths including the 5-residue met-enkephalin, the 27-residue pituitary adenylate-activating polypeptide 27(PACAP27) and the 28-residue vasoactive intestinal peptide (VIP) were undertaken. The latter two peptides are multifunctional hormones that mediate diverse biological functions, such as the cell cycle, cardiac muscle relaxation, immune response, septic shock, bone metabolism, and endocrine function. Results obtained indicate that when explicit water, methanol and DMSO solvents were used, it appeared that methanol (MeOH) and dimethylsulphoxide (DMSO) afforded met-enkephalin the ability to form more intra-hydrogen bonds than water, producing type I and type III β-turn structures; thus enhancing the helical conformation of the peptide. MD trajectories of longer polypeptides (VIP and PACAP27) were also populated with type I and type III β-turns, which occurred consecutively; with α- and 310-helices occurring from the middle of each peptide towards the C-terminal. Characterization of implicit solvent results, reveal that these simulations have been able to reproduce the same type of conformers obtained by experimental NMR studies published in literature, which structurally resemble the native conformation of the bioactive peptides. These conformational structures will be applied as lead agents in computer-aided drug design. One of the major achievements of this study is the ability to optimize and validate the force field parameter sets to describe the thermodynamic properties of peptide systems in an unbiased manner, a non-trivial task for even the smallest of peptides. These findings re-affirm the notion that computational methods have matured enough to model dynamic biological phenomena such as peptide folding, a feat previously thought to be impossible.
46

Structural and functional characterization of human APPL2, a novel adaptor protein involved in insulin signaling

Chen, Bin, 陈斌 January 2010 (has links)
published_or_final_version / Medicine / Master / Master of Philosophy
47

APPL1 and APPL2: a pair of adaptor proteins as "yin-and-yang" regulators of insulin signaling in skeletalmuscle

Zhu, Weidong, 朱伟东 January 2011 (has links)
published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
48

Evaluation of a Family of Elastin-like Polypeptide Coatings for Blood Contacting Devices

Srokowski, Elizabeth Martha 07 January 2013 (has links)
Blood contacting devices are frequently limited by complications such as surface-induced thrombosis. This thesis investigated the feasibility of using a family of recombinant elastin-like polypeptides (ELPs), namely ELP1, ELP2 and ELP4 that differ by molecular weight and sequence length, as potential thromboresistant coatings. The ELP coatings were prepared by physical adsorption onto the surface of Mylar, with surface modification confirmed by goniometry, X-ray photoelectron spectroscopy (XPS), and chemical force microscopy (CFM). Both surface wettability and hydrophilic adhesion force increased as the ELP sequence length decreased. The ELP adsorption process monitored by using quartz crystal microbalance with dissipation (QCM-D) showed that the ELPs adsorbed within a monolayer. Additionally, ELP surface coverage was found to increase with the polypeptide sequence length. The QCM-D studies also revealed that the longer polypeptides (ELP2 and ELP4) exhibited higher specific dissipation values indicating that they established adsorbed layers with greater structural flexibility and associated water content compared to ELP1. Exposure of the ELP coatings to flowing reconstituted blood demonstrated that both the ELP2 and ELP4 coatings reduced the quantity of adsorbed fibrinogen (Fg), with the ELP4 coating resulting in the lowest levels of adherent platelets. Energy dissipation versus frequency shift plots obtained from QCM-D studies indicated that adsorbed Fg on the ELP4 coating maintained a softer, more flexible film then on the other ELPs. The ELP4 coating also demonstrated an altered binding activity for GPIIb/IIIa where only the AGDV motif in the adsorbed Fg gamma-chain appeared to be exposed and bioactive. Conversely, on the other ELP coatings both the AGDV and RGD motifs (found within the Fg alpha-chain) were available for binding, suggesting that a different Fg conformational state exists on the ELP1 and ELP2 coatings. Moreover, both the ELP2 and ELP4 coatings displayed minimal bulk platelet reactivity following extended whole blood shear exposure (up to an hour) compared to Mylar. This was not observed with the ELP1 coating. Overall, the results suggest that the structural flexibility and associated water content of the ELP coatings appear to be important criteria influencing their thrombogenicity, with ELP4 displaying the most favourable blood-material response compared to ELP1 and ELP2.
49

Evaluation of a Family of Elastin-like Polypeptide Coatings for Blood Contacting Devices

Srokowski, Elizabeth Martha 07 January 2013 (has links)
Blood contacting devices are frequently limited by complications such as surface-induced thrombosis. This thesis investigated the feasibility of using a family of recombinant elastin-like polypeptides (ELPs), namely ELP1, ELP2 and ELP4 that differ by molecular weight and sequence length, as potential thromboresistant coatings. The ELP coatings were prepared by physical adsorption onto the surface of Mylar, with surface modification confirmed by goniometry, X-ray photoelectron spectroscopy (XPS), and chemical force microscopy (CFM). Both surface wettability and hydrophilic adhesion force increased as the ELP sequence length decreased. The ELP adsorption process monitored by using quartz crystal microbalance with dissipation (QCM-D) showed that the ELPs adsorbed within a monolayer. Additionally, ELP surface coverage was found to increase with the polypeptide sequence length. The QCM-D studies also revealed that the longer polypeptides (ELP2 and ELP4) exhibited higher specific dissipation values indicating that they established adsorbed layers with greater structural flexibility and associated water content compared to ELP1. Exposure of the ELP coatings to flowing reconstituted blood demonstrated that both the ELP2 and ELP4 coatings reduced the quantity of adsorbed fibrinogen (Fg), with the ELP4 coating resulting in the lowest levels of adherent platelets. Energy dissipation versus frequency shift plots obtained from QCM-D studies indicated that adsorbed Fg on the ELP4 coating maintained a softer, more flexible film then on the other ELPs. The ELP4 coating also demonstrated an altered binding activity for GPIIb/IIIa where only the AGDV motif in the adsorbed Fg gamma-chain appeared to be exposed and bioactive. Conversely, on the other ELP coatings both the AGDV and RGD motifs (found within the Fg alpha-chain) were available for binding, suggesting that a different Fg conformational state exists on the ELP1 and ELP2 coatings. Moreover, both the ELP2 and ELP4 coatings displayed minimal bulk platelet reactivity following extended whole blood shear exposure (up to an hour) compared to Mylar. This was not observed with the ELP1 coating. Overall, the results suggest that the structural flexibility and associated water content of the ELP coatings appear to be important criteria influencing their thrombogenicity, with ELP4 displaying the most favourable blood-material response compared to ELP1 and ELP2.
50

Towards understanding the mechanism of dimerisation of Saccharomyces cerevisiae eukaryotic translation initiation factor 5A /

Gentz, Petra Monika January 2008 (has links)
Thesis (Ph.D. (Biochemistry and Microbiology)) - Rhodes University, 2008

Page generated in 0.0385 seconds