• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 28
  • 4
  • Tagged with
  • 84
  • 26
  • 26
  • 20
  • 18
  • 18
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Caractérisation de la performance temporelle et de la consommation électrique de systèmes embarqués basés sur des plates-formes multiprocesseurs/coeurs et mettant en oeuvre du logiciel temps réel : FORECAST : perFORmance and Energy Consumption AnalysiS Tool

Kriegel, Joffrey 29 January 2013 (has links) (PDF)
La multiplication des plate-formes embarquées disponibles sur le marché rend de plus en plus complexe le choix d'une plate-forme pour un produit. L'arrivée des architectures multi-processeurs augmente encore plus ce phénomène. Dans le contexte industriel actuel, il est nécessaire de disposer d'une méthodologie et des outils associés permettant d'évaluer rapidement ces plate-formes et celles qui apparaitront dans le futur sur le marché afin de faire des premiers choix tôt dans le cycle de conception des produits. Précédemment, il était nécessaire d'attendre l'arrivée sur le marché des plate-formes de test afin d'exécuter sur ces plate-formes des benchmarks et des applications afin d'évaluer leur performance et leur consommation. Nous proposons ici une méthodologie et les outils associés permettant de modéliser un système (logiciel et matériel) puis d'estimer ses performances et sa consommation d'énergie. Notre méthodologie s'appuie sur des modèles simples à mettre en œuvre utilisant uniquement des informations présentes dans les documents techniques des constructeurs. Autre avantage de notre approche, la simulation réalisée s'appuie sur du code exécutable généré automatiquement afin de s'exécuter en natif sur un ordinateur. Cela permet une exécution rapide des scénarios de test et offre la possibilité de faire de l'exploration d'architectures. Nous avons procédé à diverses validations en utilisant des applications variées (décodeur H.264, application radio, benchmarks classiques, ...) et en comparant les performances et la consommation estimée avec l'équivalent sur des plate-formes réelles (OMAP3/4, i.MX6, QorIQ, ...). Cela a permis d'évaluer l'erreur d'estimation de FORECAST (l'outil développé lors de cette thèse) et ainsi de s'assurer que le taux d'erreur reste dans des bornes admissibles c'est-à-dire inferieures à 20%. Nous avons d'un autre côté comparé notre approche avec celles développées dans deux autres projets OpenPEOPLE (ANR) et COMCAS (Catrene) afin de s'assurer que le rapport effort/précision de notre approche est intéressant.
22

Modèles de programmation et d'exécution pour les architectures parallèles et hybrides. Applications à des codes de simulation pour la physique.

Ospici, Matthieu 03 July 2013 (has links) (PDF)
Nous nous intéressons dans cette thèse aux grandes architectures parallèles hybrides, c'est-à-dire aux architectures parallèles qui sont une combinaison de processeurs généraliste (Intel Xeon par exemple) et de processeurs accélérateur (GPU Nvidia). L'exploitation efficace de ces grappes hybrides pour le calcul haute performance est au cœur de nos travaux. L'hétérogénéité des ressources de calcul au sein des grappes hybrides pose de nombreuses problématiques lorsque l'on souhaite les exploiter efficacement avec de grandes applications scientifiques existantes. Deux principales problématiques ont été traitées. La première concerne le partage des accélérateurs pour les applications MPI et la seconde porte sur la programmation et l'exécution concurrente de code entre CPU et accélérateur. Les architectures hybrides sont très hétérogènes : en fonction des architectures, le ratio entre le nombre d'accélérateurs et le nombre de coeurs CPU est très variable. Ainsi, nous avons tout d'abord proposé une notion de virtualisation d'accélérateur, qui permet de donner l'illusion aux applications qu'elles ont la capacité d'utiliser un nombre d'accélérateurs qui n'est pas lié au nombre d'accélérateurs physiques disponibles dans le matériel. Un modèle d'exécution basé sur un partage des accélérateurs est ainsi mis en place et permet d'exposer aux applications une architecture hybride plus homogène. Nous avons également proposé des extensions aux modèles de programmation basés sur MPI / threads afin de traiter le problème de l'exécution concurrente entre CPU et accélérateurs. Nous avons proposé pour cela un modèle basé sur deux types de threads, les threads CPU et accélérateur, permettant de mettre en place des calculs hybrides exploitant simultanément les CPU et les accélérateurs. Dans ces deux cas, le déploiement et l'exécution du code sur les ressources hybrides est crucial. Nous avons pour cela proposé deux bibliothèques logicielles S_GPU 1 et S_GPU 2 qui ont pour rôle de déployer et d'exécuter les calculs sur le matériel hybride. S_GPU 1 s'occupant de la virtualisation, et S_GPU 2 de l'exploitation concurrente CPU -- accélérateurs. Pour observer le déploiement et l'exécution du code sur des architectures complexes à base de GPU, nous avons intégré des mécanismes de traçage qui permettent d'analyser le déroulement des programmes utilisant nos bibliothèques. La validation de nos propositions a été réalisée sur deux grandes application scientifiques : BigDFT (simulation ab-initio) et SPECFEM3D (simulation d'ondes sismiques). Nous les avons adapté afin qu'elles puissent utiliser S_GPU 1 (pour BigDFT) et S_GPU 2 (pour SPECFEM3D).
23

Modèles de programmation et d'exécution pour les architectures parallèles et hybrides. Applications à des codes de simulation pour la physique. / Programming models and execution models for parallel and hybrid architectures. Application to physics simulations.

Ospici, Matthieu 03 July 2013 (has links)
Nous nous intéressons dans cette thèse aux grandes architectures parallèles hybrides, c'est-à-dire aux architectures parallèles qui sont une combinaison de processeurs généraliste (Intel Xeon par exemple) et de processeurs accélérateur (GPU Nvidia). L'exploitation efficace de ces grappes hybrides pour le calcul haute performance est au cœur de nos travaux. L'hétérogénéité des ressources de calcul au sein des grappes hybrides pose de nombreuses problématiques lorsque l'on souhaite les exploiter efficacement avec de grandes applications scientifiques existantes. Deux principales problématiques ont été traitées. La première concerne le partage des accélérateurs pour les applications MPI et la seconde porte sur la programmation et l'exécution concurrente de code entre CPU et accélérateur. Les architectures hybrides sont très hétérogènes : en fonction des architectures, le ratio entre le nombre d'accélérateurs et le nombre de coeurs CPU est très variable. Ainsi, nous avons tout d'abord proposé une notion de virtualisation d'accélérateur, qui permet de donner l'illusion aux applications qu'elles ont la capacité d'utiliser un nombre d'accélérateurs qui n'est pas lié au nombre d'accélérateurs physiques disponibles dans le matériel. Un modèle d'exécution basé sur un partage des accélérateurs est ainsi mis en place et permet d'exposer aux applications une architecture hybride plus homogène. Nous avons également proposé des extensions aux modèles de programmation basés sur MPI / threads afin de traiter le problème de l'exécution concurrente entre CPU et accélérateurs. Nous avons proposé pour cela un modèle basé sur deux types de threads, les threads CPU et accélérateur, permettant de mettre en place des calculs hybrides exploitant simultanément les CPU et les accélérateurs. Dans ces deux cas, le déploiement et l'exécution du code sur les ressources hybrides est crucial. Nous avons pour cela proposé deux bibliothèques logicielles S_GPU 1 et S_GPU 2 qui ont pour rôle de déployer et d'exécuter les calculs sur le matériel hybride. S_GPU 1 s'occupant de la virtualisation, et S_GPU 2 de l'exploitation concurrente CPU -- accélérateurs. Pour observer le déploiement et l'exécution du code sur des architectures complexes à base de GPU, nous avons intégré des mécanismes de traçage qui permettent d'analyser le déroulement des programmes utilisant nos bibliothèques. La validation de nos propositions a été réalisée sur deux grandes application scientifiques : BigDFT (simulation ab-initio) et SPECFEM3D (simulation d'ondes sismiques). Nous les avons adapté afin qu'elles puissent utiliser S_GPU 1 (pour BigDFT) et S_GPU 2 (pour SPECFEM3D). / We focus on large parallel hybrid architectures based on a combination of general processors (eg Intel Xeon) and accelerators (Nvidia GPU). Using with efficiency these hybrid clusters for high performance computing is central in our work. The heterogeneity of computing resources in hybrid clusters leads to many issues when we want to use large scientific applications on it. Two main issues were addressed in this thesis. The first one concerns the sharing of accelerators for MPI applications and the second one focuses on programming and concurrent execution of application between CPUs and accelerators. Hybrid architectures are very heterogeneous: for each cluster, the ratio between the number of accelerators and the number of CPU cores can be different. Thus, we first propose a concept of accelerator virtualization, which allows applications to view an architecture in which the number of accelerators is not related to the number of physical accelerators. An execution model based on the sharing of accelerators is proposed. We also propose extensions to the programming model based on MPI + threads to address the problem of concurrent execution between CPUs and accelerators. We propose a system based on two types of threads (CPU and accelerator threads) to implement hybrid calculations simultaneously exploiting the CPU and accelerators model. In both cases, the deployment and the execution of code on hybrid resources is critical. Consequently, we propose two software libraries, called S_GPU 1 and S_GPU 2, designed to deploy and perform calculations on the hybrid hardware. S_GPU 1 deals with virtualization and S_GPU 2 allows concurrent operations on CPUs and accelerators. To observe the deployment and the execution of code on complex hybrid architectures, we integrated trace mechanisms for analyzing the progress of the programs using our libraries. The validation of our proposals has been carried out on two large scientific applications: BigDFT (ab-initio simulation) and SPECFEM3D (simulation of seismic waves).
24

Mapping and scheduling on multi-core processors using SMT solvers / Allocation et ordonnancement sur des processeurs multi-coeur avec des solveurs SMT

Tendulkar, Pranav 13 October 2014 (has links)
Dans l’objectif d’augmenter les performances, l’architecture des processeurs a évolué versdes plate-formes "multi-core" et "many-core" composées de multiple unités de traitements.Toutefois, trouver des moyens efficaces pour exécuter du logiciel parallèle reste un problèmedifficile. Avec un grand nombre d’unités de calcul disponibles, le logiciel doit orchestrer lacommunication et assurer la synchronisation lors de l’exécution du code. La communication(transport des données entre les différents processeurs) est gérée de façon transparente par lematériel ou explicitement par le logiciel.Les modèles qui représentent les algorithmes de façon structurée et formelle mettent enévidence leur parallélisme inhérent. Le déploiement des logiciels représentés par ces modèlesnécessite de spécifier placement (sur quel processeur s’exécute une certaine tâche) et l’ordonnancement(dans quel ordre sont exécutées les tâches). Le placement et l’ordonnancement sontdes problèmes combinatoires difficile avec un nombre exponentiel de solutions. En outre, lessolutions ont différents coûts qui doivent être optimisés : la consommation de mémoire, letemps d’exécution, les ressources utilisées, etc. C’est un problème d’optimisation multi-critères.La solution à ce problème est ce qu’on appelle un ensemble Pareto-optimal nécessitant desalgorithmes spéciaux pour l’approximer.Nous ciblons une classe d’applications, appelées applications de streaming, qui traitentun flux continu de données. Ces applications qui appliquent un calcul similaire sur différentséléments de données successifs, peuvent être commodément exprimées par une classe de modèlesappelés modèles de flux de données. Le problème du placement et de l’ordonnancementest codé sous forme de contraintes logiques et résolu par un solveur Satisfaisabilité ModuloThéories (SMT). Les solveurs SMT résolvent le problème en combinant des techniques derecherche et de la propagation de contraintes afin d’attribuer des valeurs aux variables duproblème satisfaisant les contraintes de coût données.Dans les applications de flux de données, l’espace de conception explose avec l’augmentationdu nombre de tâches et de processeurs. Dans cette thèse, nous nous attaquons à ceproblème par l’introduction des techniques de réduction de symétrie et démontrons que larupture de symétrie accélère la recherche dans un solveur SMT, permettant ainsi l’augmentationde la taille du problème qui peut être résolu. Notre algorithme d’exploration de l’espacede conception approxime le front de Pareto du problème et produit des solutions pour différentscompromis de coûts. De plus, nous étendons le problème d’ordonnancement pour lesplate-formes "many-core" qui sont une catégorie de plate-forme multi coeurs où les unités sontconnectés par un réseau sur puce (NoC). Nous fournissons un flot de conception qui réalise leplacement des applications sur de telles plate-formes et insert automatiquement des élémentssupplémentaires pour modéliser la communication à l’aide de mémoires de taille bornée. Nousprésentons des résultats expérimentaux obtenus sur deux plate-formes existantes : la machineKalray à 256 processeurs et les Tilera TILE-64. / In order to achieve performance gains, computers have evolved to multi-core and many-core platforms abounding with multiple processor cores. However the problem of finding efficient ways to execute parallel software on them is hard. With a large number of processor cores available, the software must orchestrate the communication, synchronization along with the code execution. Communication corresponds to the transport of data between different processors, handled transparently by the hardware or explicitly by the software.Models which represent the algorithms in a structured and formal way expose the available parallelism. Deployment of the software algorithms represented by such models needs a specification of which processor to execute the tasks on (mapping) and when to execute them (scheduling). Mapping and scheduling is a hard combinatorial problem with exponential number of solutions. In addition, the solutions have multiple costs that need to be optimized, such as memory consumption, time to execute, resources used etc. Such a problem with multiple costs is called a multi-criteria optimization problem. The solution to this problem is a set of incomparable solutions called Pareto solutions which need special algorithms to approximate them.We target a class of applications called streaming applications, which process a continuous stream of data. These applications apply similar computation on different data items, can be conveniently expressed by a class of models called dataflow models. We encode mapping and scheduling problem in form of logical constraints and present it to satisfiability modulo theory (SMT) solvers. SMT solvers, solve the encoded problem by using a combination of search techniques and constraint propagation to find an assignment to the problem variables satisfying the given cost constraints.In dataflow applications, the design space explodes with increased number of tasks and processors. In this thesis, we tackle this problem by introduction symmetry reduction techniques and demonstrate that symmetry breaking accelerates search in SMT solver, increasing the size of the problem that can be solved. Our design-space exploration algorithm approximates Pareto front of the problem and produces solutions with different cost trade-offs. Further we extend the scheduling problem to the many-core platforms which are a group of multi-core platforms connected by network-on-chip. We provide a design flow which performs mapping of the applications on such platforms and automatic insertion of additional elements to model the communication using bounded memory. We provide experimental results obtained on the 256-processor Kalray and the Tilera TILE-64 platforms.The multi-core processors have typically a small amount of memory close to the processor, generally insufficient for all application data to fit. We study a class of parallel applications having a regular data access pattern and large amount of data to be processed by a uniform computation. The data must be brought from main memory to local memory, processed and then the results written back to main memory, all in batches. Selecting the proper granularity of the data that is brought into local memory is an optimization problem. We formalize this problem and provide a way to determine the optimal transfer granularity depending on the characteristics of application and the hardware platform.In addition to the scheduling problems and local memory management, we study a part of the problem of runtime management of the applications. Applications in modern embedded systems can start and stop dynamically. In order to execute all the applications efficiently and to optimize global costs such as power consumption, execution time etc., the applications must be reconfigured dynamically at runtime. We present a predictable and composable (executing independently without affecting others) way of migrating tasks according to the reconfiguration decision.
25

Conception d'un outil de prototypage rapide sur le FPGA pour des applications de traitement d'images / Design of tools for rapid prototyping onto FPGA for applications in image processing

Saptono, Debyo 04 November 2011 (has links)
Ce manuscrit présente les travaux menés pour proposer un flot de conception permettant d’implanter des processeurs RISP dans un circuit reprogrammable (FPGA). Après une description des différentes solutions envisageables pour réaliser des prototypes dans le domaine du traitement d’image, ce document décrit une méthode qui consiste à générer des modèles matériels de processeurs destinés au traitement d’images, avec des opérateurs taillés sur une application donnée. Un ensemble d’expérimentations utilisant des algorithmes courants permet d’évaluer les performances du flot de conception proposé. Le prototypage rapide d’un système biométrique sans contact, basé sur la reconnaissance de paumes a été aussi réalisé sur la plateforme de test. / This manuscript presents work to propose a development cycle to establish RISP processors in a reprogrammable chip (FPGA). After a description of the various possible solutions to produce image processing prototypes, this document describes a method which consists in generating hardware models of processor target to image processing, with operators just for a given application. Test with a set of common algorithm makes evaluate the performances of the design cycle proposed. Rapid prototyping of a contact less biometric system, based on palmprint recognition, is also realized on the test platform.
26

Dosimétrie interne calculée sur GPU pour le traitement de tumeurs neuroendocrines à l'aide du ¹⁷⁷Lu-octréotate

Montégiani, Jean-François 20 April 2018 (has links)
Ce projet vise à élaborer un outil de calcul dosimétrique pour les traitements de thérapie radionucléique par radiopeptides (TRRP) au ¹⁷⁷Lu-octréotate. Pour ce faire, des images tomographiques par émission monophotonique et tomodensitométriques (TEM/TDM) acquises environ 4, 24 et 72 heures après l’administration du radiopharmaceutique sont recalées et quantifiées pour obtenir la biodistribution 4D du composé. Ces images permettent de calculer le taux de dose lors de la séance d’imagerie correspondante. Ces calculs sont réalisés sur processeurs graphiques afin de paralléliser le calcul de la dose. L’utilisation d’une régression biexponentielle permet d’établir les courbes de taux de dose en fonction du temps, qui sont intégrées pour obtenir la dose absorbée dans les régions étudiées. L’étude des patients ayant été traités au centre hospitalier universitaire (CHU) de Québec a permis de vérifier les résultats obtenus avec le code, en plus de s’intéresser à la prédiction de la dose rénale et la proportion de la dose absorbée due au rayonnement γ.
27

Développement d’algorithmes d’imagerie et de reconstruction sur architectures à unités de traitements parallèles pour des applications en contrôle non destructif / Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

Pedron, Antoine 28 May 2013 (has links)
La problématique de cette thèse se place à l’interface entre le domaine scientifique du contrôle non destructif par ultrasons (CND US) et l’adéquation algorithme architecture. Le CND US comprend un ensemble de techniques utilisées pour examiner un matériau, qu’il soit en production ou maintenance. Afin de détecter d’éventuels défauts, de les positionner et les dimensionner, des méthodes d’imagerie et de reconstruction ont été développées au CEA-LIST, dans la plateforme logicielle CIVA.L’évolution du matériel d’acquisition entraine une augmentation des volumes de données et par conséquent nécessite toujours plus de puissance de calcul pour parvenir à des reconstructions en temps interactif. L’évolution multicoeurs des processeurs généralistes (GPP), ainsi que l’arrivée de nouvelles architectures comme les GPU rendent maintenant possible l’accélération de ces algorithmes.Le but de cette thèse est d’évaluer les possibilités d’accélération de deux algorithmes de reconstruction sur ces architectures. Ces deux algorithmes diffèrent dans leurs possibilités de parallélisation. Pour un premier, la parallélisation sur GPP est relativement immédiate, contrairement à celle sur GPU qui nécessite une utilisation intensive des instructions atomiques. Quant au second, le parallélisme est plus simple à exprimer, mais l’ordonnancement des nids de boucles sur GPP, ainsi que l’ordonnancement des threads et une bonne utilisation de la mémoire partagée des GPU sont nécessaires pour obtenir un fonctionnement efficace. Pour ce faire, OpenMP, CUDA et OpenCL ont été utilisés et comparés. L’intégration de ces prototypes dans la plateforme CIVA a mis en évidence un ensemble de problématiques liées à la maintenance et à la pérennisation de codes sur le long terme. / This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterize possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform.Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purprose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms.The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed.
28

Contribution à la modélisation numérique de la propagation des ondes sismiques sur architectures multicoeurs et hiérarchiques

Dupros, Fabrice 13 December 2010 (has links) (PDF)
En termes de prévention du risque associé aux séismes, la prédiction quantitative des phénomènes de propagation et d'amplification des ondes sismiques dans des structures géologiques complexes devient essentielle. Dans ce domaine, la simulation numérique est prépondérante et l'exploitation efficace des techniques de calcul haute performance permet d'envisager les modélisations à grande échelle nécessaires dans le domaine du risque sismique. Plusieurs évolutions récentes au niveau de l'architecture des machines parallèles nécessitent l'adaptation des algorithmes classiques utilisées pour la modélisation sismique. En effet, l'augmentation de la puissance des processeurs se traduit maintenant principalement par un nombre croissant de coeurs de calcul et les puces multicoeurs sont maintenant à la base de la majorité des architectures multiprocesseurs. Ce changement correspond également à une plus grande complexité au niveau de l'organisation physique de la mémoire qui s'articule généralement autour d'une architecture NUMA (Non Uniform Memory Access pour accès mémoire non uniforme)~de profondeur importante. Les contributions de cette thèse se situent à la fois au niveau algorithmique et numérique mais abordent également l'articulation avec les supports d'exécution optimisés pour les architectures multicoeurs. Les solutions retenues sont validées à grande échelle en considérant deux exemples de modélisation sismique. Le premier cas se situe dans la préfecture de Niigata-Chuetsu au Japon (événement du 16 juillet 2007) et repose sur la méthode des différences finies. Le deuxième exemple met en oeuvre la méthode des éléments finis. Un séisme hypothétique dans la région de Nice est modélisé en tenant compte du comportement non linéaire du sol.
29

Contribution à la modélisation numérique de la propagation des ondes sismiques sur architectures multicœurs et hiérarchiques

Dupros, Fabrice 13 December 2010 (has links)
En termes de prévention du risque associé aux séismes, la prédiction quantitative des phénomènes de propagation et d'amplification des ondes sismiques dans des structures géologiques complexes devient essentielle. Dans ce domaine, la simulation numérique est prépondérante et l'exploitation efficace des techniques de calcul haute performance permet d'envisager les modélisations à grande échelle nécessaires dans le domaine du risque sismique.Plusieurs évolutions récentes au niveau de l'architecture des machines parallèles nécessitent l'adaptation des algorithmes classiques utilisées pour la modélisation sismique. En effet, l'augmentation de la puissance des processeurs se traduit maintenant principalement par un nombre croissant de cœurs de calcul et les puces multicœurs sont maintenant à la base de la majorité des architectures multiprocesseurs. Ce changement correspond également à une plus grande complexité au niveau de l'organisation physique de la mémoire qui s'articule généralement autour d'une architecture NUMA (Non Uniform Memory Access pour accès mémoire non uniforme) de profondeur importante.Les contributions de cette thèse se situent à la fois au niveau algorithmique et numérique mais abordent également l'articulation avec les supports d'exécution optimisés pour les architectures multicœurs. Les solutions retenues sont validées à grande échelle en considérant deux exemples de modélisation sismique. Le premier cas se situe dans la préfecture de Niigata-Chuetsu au Japon (événement du 16 juillet 2007) et repose sur la méthode des différences finies. Le deuxième exemple met en œuvre la méthode des éléments finis. Un séisme hypothétique dans la région de Nice est modélisé en tenant compte du comportement non linéaire du sol. / One major goal of strong motion seismology is the estimation of damage in future earthquake scenarios. Simulation of large scale seismic wave propagation is of great importance for efficient strong motion analysis and risk mitigation. Being particularly CPU-consuming, this three-dimensional problem makes use of high-performance computing technologies to make realistic simulation feasible on a regional scale at relatively high frequencies.Several evolutions at the chip level have an important impact on the performance of classical implementation of seismic applications. The trend in parallel computing is to increase the number of cores available at the shared-memory level with possible non-uniform cost of memory accesses. The increasing number of cores per processor and the effort made to overcome the limitation of classical symmetric multiprocessors SMP systems make available a growing number of NUMA (Non Uniform Memory Access) architecture as computing node. We therefore need to consider new approaches more suitable to such parallel systems.This PhD work addresses both the algorithmic issues and the integration of efficient programming models for multicore architectures. The proposed contributions are validated with two large scale examples. The first case is the modeling of the 2007 Niigata-Chuetsu, Japan earthquake based on the finite differences numerical method. The second example considers a potential seismic event in the Nice sedimentary basin in the French Riviera. The finite elements method is used and the nonlinear soil behavior is taken into account.
30

Throughput-oriented analytical models for performance estimation on programmable hardware accelerators / Analyse de performance potentielle d'une simulation de QCD sur réseau sur processeur Cell et GPU

Lai, Junjie 15 February 2013 (has links)
Durant cette thèse, nous avons principalement travaillé sur deux sujets liés à l'analyse de la performance GPU (Graphics Processing Unit - Processeur graphique). Dans un premier temps, nous avons développé une méthode analytique et un outil d'estimation temporel (TEG) pour prédire les performances d'applications CUDA s’exécutant sur des GPUs de la famille GT200. Cet outil peut prédire les performances avec une précision approchant celle des outils précis au cycle près. Dans un second temps, nous avons développé une approche pour estimer la borne supérieure des performances d'une application GPU, en se basant sur l'analyse de l'application et de son code assembleur. Avec cette borne, nous connaissons la marge d'optimisation restante, et nous pouvons décider des efforts d'optimisation à fournir. Grâce à cette analyse, nous pouvons aussi comprendre quels paramètres sont critiques à la performance. / In this thesis work, we have mainly worked on two topics of GPU performance analysis. First, we have developed an analytical method and a timing estimation tool (TEG) to predict CUDA application's performance for GT200 generation GPUs. TEG can predict GPU applications' performance in cycle-approximate level. Second, we have developed an approach to estimate GPU applications' performance upper bound based on application analysis and assembly code level benchmarking. With the performance upper bound of an application, we know how much optimization space is left and can decide the optimization effort. Also with the analysis we can understand which parameters are critical to the performance.

Page generated in 0.0202 seconds