• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 4
  • 4
  • Tagged with
  • 32
  • 32
  • 16
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Implementierung und Validierung eines Monte-Carlo-Teilchentransport-Modells für das Prompt Gamma-Ray Timing-System

Urban, Konstantin 30 January 2024 (has links)
Die Protonentherapie zeichnet sich durch steile Dosisgradienten und damit einen gut lokalisierbaren Energieübertrag aus. Um dieses Potential voll ausschöpfen zu können, werden weltweit Möglichkeiten erforscht, die Dosisdeposition und insbesondere die Reichweite der Protonen im Patienten zu verifizieren. Eine vielversprechende, erst im letzten Jahrzehnt entdeckte Methode ist das Prompt Gamma-Ray Timing (PGT), das auf der Abhängigkeit der detektierten Flugzeitverteilung prompter Gammastrahlung von der Transitzeit der Protonen im Patienten beruht. In dieser Arbeit wird eine Geant4-Simulation zur Vorhersage der PGT-Spektren bei Bestrahlung eines PMMA-Phantoms entwickelt und durch den Vergleich mit experimentellen Daten validiert. Sowohl die Emissionsausbeute prompter Gammastrahlung im Phantom als auch die Detektionsrate werden abhängig von der Protonenenergie analysiert. Zur Vergleichbarkeit mit den gemessenen Spektren wird eine mehrschrittige Prozessierung der Simulationsergebnisse vorgestellt. Schließlich wird die Simulation genutzt, um die Sensitivität der PGT-Methode auf Reichweitenänderungen zu demonstrieren. Dafür können in das Phantom Cavitäten unterschiedlicher Dicke und verschiedenen Materials eingefügt werden. Für geeignet gewählte Verteilungsparameter der simulierten PGT-Spektren wird deren detektierte Änderung mit der bekannten induzierten Reichweitenänderung ins Verhältnis gesetzt. Die so bestimmte Sensitivität ist mit früheren Ergebnissen für gemessene Spektren im Rahmen der Unsicherheiten in Übereinstimmung.:1 Einleitung und Motivation 1 2 Theoretische Grundlagen 5 2.1 Wechselwirkung von Protonen mit Materie 5 2.1.1 Bethe-Bloch-Gleichung 6 2.1.2 Reichweite im CSDA-Modell 9 2.1.3 Tiefendosiskurve und Bragg-Peak 10 2.2 Prompt Gamma-Ray Timing 11 2.2.1 Emission prompter Gammastrahlung 11 2.2.2 Korrelation zur Protonen-Reichweite und Dosisdeposition 11 2.2.3 Idee des Prompt Gamma-Ray Timings 14 3 Material und Methoden 17 3.1 Dresdner IBA-Protonentherapie 17 3.1.1 Beschleunigungsprinzip des Isochronzyklotrons 17 3.1.2 Zeitliche Struktur der Protonen-Pakete 18 3.2 Teilchentransportrechnungen mit Geant4 20 3.3 PLD-Format für Pencil-Beam-Scanning-Pläne 21 3.3.1 Geometrische Definition der Spots 21 3.3.2 Dosimetrische Definition der Spots 23 3.3.3 Verwendete Bestrahlungspläne 24 3.4 Messaufbau zur experimentellen Validierung 26 3.4.1 Target – PMMA-Phantom mit verschiedenen Cavitäten 27 3.4.2 Detektoren – CeBr3-Szintillatoren mit Photomultipliern 27 4 Ergebnisse und Diskussion 29 4.1 Simulierte Emission prompter Gammastrahlung 29 4.1.1 Simulierte Emissionsspektren 29 4.1.2 Simulierte Emissionsprofile 30 4.1.3 Totale Emissionsausbeute 31 4.2 Simulierte Detektion prompter Gammastrahlung 33 4.2.1 Detektionsrate und Raumwinkeleffekt 33 4.2.2 Simulierte PGT-Spektren 35 4.2.3 Simulierte Energiespektren 37 4.3 Vergleich simulierter und gemessener Spektren 39 4.3.1 Nachverarbeitung der Simulationsergebnisse 40 4.3.2 Auswahl des Energiefensters 45 4.3.3 Empirisches Modell zur Beschreibung der Zeitspektren 47 4.3.4 Diskussion systematischer Abweichungen 49 4.4 Sensitivität der Simulation gegenüber induzierten Reichweitenänderungen 51 5 Zusammenfassung und Ausblick 59 Anhang 61 A Parameter des Messaufbaus 61 B Angepasste Modellparameter aus Abbildung 4.12 62 C Sensitivität auf Reichweitenänderung bei 162 MeV 63 Literaturverzeichnis 69 / Proton therapy is characterized by steep dose gradients and thus a well-localizable energy transfer. To fully harness this potential, possibilities are being explored worldwide to verify the dose deposition and especially the range of protons in the patient. A promising method discovered only in the last decade is prompt gamma-ray timing (PGT), which relies on the dependence of the detected time-of-flight distribution of prompt gamma radiation on the transit time of protons in the patient. In this study, a Geant4 simulation is developed to predict PGT spectra during irradiation of a PMMA phantom and validated by comparison with experimental data. Both the emission yield of prompt gamma radiation in the phantom and the detection rate are analyzed depending on the proton energy. For comparability with the measured spectra, a multi-step processing of the simulated results is presented. Finally, the simulation is used to demonstrate the sensitivity of the PGT method to changes in range. For this purpose, cavities of different thicknesses and materials can be inserted into the phantom. For appropriately chosen distribution parameters of the simulated PGT spectra, their detected change is compared to the known induced change in range. The sensitivity determined in this way is consistent with previous results for measured spectra within the uncertainties.:1 Einleitung und Motivation 1 2 Theoretische Grundlagen 5 2.1 Wechselwirkung von Protonen mit Materie 5 2.1.1 Bethe-Bloch-Gleichung 6 2.1.2 Reichweite im CSDA-Modell 9 2.1.3 Tiefendosiskurve und Bragg-Peak 10 2.2 Prompt Gamma-Ray Timing 11 2.2.1 Emission prompter Gammastrahlung 11 2.2.2 Korrelation zur Protonen-Reichweite und Dosisdeposition 11 2.2.3 Idee des Prompt Gamma-Ray Timings 14 3 Material und Methoden 17 3.1 Dresdner IBA-Protonentherapie 17 3.1.1 Beschleunigungsprinzip des Isochronzyklotrons 17 3.1.2 Zeitliche Struktur der Protonen-Pakete 18 3.2 Teilchentransportrechnungen mit Geant4 20 3.3 PLD-Format für Pencil-Beam-Scanning-Pläne 21 3.3.1 Geometrische Definition der Spots 21 3.3.2 Dosimetrische Definition der Spots 23 3.3.3 Verwendete Bestrahlungspläne 24 3.4 Messaufbau zur experimentellen Validierung 26 3.4.1 Target – PMMA-Phantom mit verschiedenen Cavitäten 27 3.4.2 Detektoren – CeBr3-Szintillatoren mit Photomultipliern 27 4 Ergebnisse und Diskussion 29 4.1 Simulierte Emission prompter Gammastrahlung 29 4.1.1 Simulierte Emissionsspektren 29 4.1.2 Simulierte Emissionsprofile 30 4.1.3 Totale Emissionsausbeute 31 4.2 Simulierte Detektion prompter Gammastrahlung 33 4.2.1 Detektionsrate und Raumwinkeleffekt 33 4.2.2 Simulierte PGT-Spektren 35 4.2.3 Simulierte Energiespektren 37 4.3 Vergleich simulierter und gemessener Spektren 39 4.3.1 Nachverarbeitung der Simulationsergebnisse 40 4.3.2 Auswahl des Energiefensters 45 4.3.3 Empirisches Modell zur Beschreibung der Zeitspektren 47 4.3.4 Diskussion systematischer Abweichungen 49 4.4 Sensitivität der Simulation gegenüber induzierten Reichweitenänderungen 51 5 Zusammenfassung und Ausblick 59 Anhang 61 A Parameter des Messaufbaus 61 B Angepasste Modellparameter aus Abbildung 4.12 62 C Sensitivität auf Reichweitenänderung bei 162 MeV 63 Literaturverzeichnis 69
12

Benchmark of the fission channels in TALYS

Nordström, Fredrik January 2021 (has links)
In this project, different fission models in the nuclear reaction code TALYS have been compared to GEF version 2020/1.2. The data included in the comparison are mass yield distributions, average prompt neutron energies per fragment mass, and average multiplicities of both neutrons and γ-rays per fragment mass. The reaction studied in the first part of the project is 1 keV neutron-induced fission of 235U. In the second part of the study, a variety of different nuclei and different incident energies were included in comparisons, but a limitation was set to only include neutron-induced fission. The results from the comparison suggested that TALYS fymodel 2 and 3 were less consistent with GEF than fymodel 4. For the comparisons with experimental data, fymodel 4 also performed better overall. TALYS fymodel 2 and 3 make use of implemented partial versions of GEF to produce fission fragment distributions, while fymodel 4 takes fission fragment distribution data from separate yieldfiles. A database of these yieldfiles with 737 different nuclei and 10 energy levels was produced, to be implemented in future versions of TALYS. The energy levels were chosen to get a range of energies that can be accurately interpolated between. This method of using TALYS fymodel 4 with a yieldfile from GEF consistently showed a strong agreement with GEF version 2020/1.2 for the mass yield distributions and the neutron multiplicities. The γ-ray multiplicities and the neutron energies show a slightly weaker agreement, and TALYS gives consistently smaller values than GEF for these quantities.
13

Statistische Modellierung der Prompt Gamma-Ray Timing Methode für die Verifikation der Protonentherapie

Wiedkamp, Julia 09 December 2021 (has links)
Das Prompt Gamma-Ray Timing (PGT) ist eine vielversprechende Methode für die in vivo Reichweite-Verifikation in der Protonentherapie. Dabei wird mit unkollimierten Szintillationsdetektoren die Zeit-Verteilung prompter Gammastrahlung, in der die Protonenreichweite enthalten ist, gemessen. In dieser Arbeit wurden PGT-Spektren einer Bestrahlung eines Plastikphantoms mit verschiedenen Dicken an Luftkavitäten analysiert. Neben der Optimierung der Datenverarbeitung wurden Methoden für die Selektion statistischer Parameter implementiert und die resultierenden linearen Modelle mit denen der bisher verwendeten Parameter verglichen. Zusätzlich wurde der Einfluss der Spotakkumulation und die Energieabhängigkeit der Modelle untersucht. Nachdem die Datenverarbeitung optimiert werden konnte, zeigte der Vergleich der Modelle eine deutlich bessere Vorhersage der neu entwickelten Modelle (R2 > 0;5) im Vergleich zu den bisher verwendeten Modellen (R2 < 0;1), wobei eine weitere Verbesserung durch die Akkumulation von Spots erreicht werden konnte (R2 > 0;9). Weiterhin zeigte die Parameterselektion eine deutlich bessere Vorhersagekraft der energiespezifischen (RMSE < 1;8 mm) gegenüber den energieunabhängigen Modellen (RMSE > 3 mm). Die gewonnenen Erkenntnisse leisten einen wesentlichen Beitrag zur klinischen Implementierung der PGT-Methode. / Prompt Gamma-Ray Timing (PGT) is a promising method for in vivo range verification in proton therapy. The distribution of prompt gamma radiation, in which the proton range is encoded, is measured in a time-resolved manner with uncollimated scintillation detectors. In this work, PGT spectra acquired during irradiation of a plastic phantom with air cavities of different thicknesses were analyzed. In addition to the optimization of the data processing, methods for parameter selection were implemented and the resulting linear models were compared with those of previously used parameters. In addition, the influence of a spot accumulation and the energy dependency of the models were examined. After the data preprocessing could be optimized, the newly developed models showed a strongly improved predictive power (R2 > 0;5) compared to the previously used models (R2 < 0;1) and a further improvement could be achieved by the accumulation of spots (R2 > 0;9). In addition the parameter selection showed better predictive power of the energy-specific models (RMSE < 1;8 mm) compared to the energy-independent models (RMSE > 3 mm). The knowledge gained can contribute to the clinical implementation of the PGT method.
14

In vivo detection of gadolinium by prompt gamma neutron activation analysis: An investigation of the potential toxicity of gadolinium-based contrast agents used in MRI

Gräfe, James L. 10 1900 (has links)
<p>This thesis describes the development of a method to measure <em>in vivo</em> gadolinium (Gd) content by prompt gamma neutron activation analysis (PGNAA). PGNAA is a quantitative measurement technique that is completely non-invasive. Gadolinium has the highest thermal neutron capture cross section of all the stable elements. Gadolinium-based contrast agents are widely used in magnetic resonance imaging (MRI). The primary intention of this work is to quantify <em>in vivo</em> Gd retention to investigate the potential toxicity of these agents. This study involves the optimization of the McMaster University <sup>238</sup>Pu/Be PGNAA facility for Gd measurements. Monte Carlo simulations were performed in parallel with the experimental work using MCNP version 5. Excellent agreement has been demonstrated between the Monte Carlo model of the system and the experimental measurements (both sensitivity and dosimetry). The initial study on the sensitivity of Gd demonstrated the feasibility of the measurement system. The Monte Carlo dosimetry simulations and experimental survey measurements demonstrated consistently that the radiation exposures for a single measurement were quite low, with an effective dose rate of 1.1 µSv/hr for a leg muscle measurement, 74 µSv/hr for a kidney measurement, and 48 µSv/hr for a liver measurement. The initial studies confirmed the Gd measurement feasibility which ultimately led to an <em>in vivo</em> pilot study on 10 healthy volunteers. The pilot study was successful with 9 out of 10 volunteers having measureable Gd in muscle above the <em>in vivo</em> detection limit of 0.58 ppm within 1 hour of administration, and the remaining participant had detectable Gd 196 minutes post administration. The concentrations measured ranged from 6.9 to 56 uncertainties different from zero. The system has been validated in humans and can now be used in future studies of short or long-term retention of Gd after contrast administration in at risk populations, such as those with reduced kidney function, patients with multiple exposures over the treatment period, and patients who are prescribed higher dosages. In addition, experiments and simulations were extended to another high neutron absorbing element, samarium (Sm).</p> / Doctor of Philosophy (PhD)
15

Simulation studies for the in-vivo dose verification of particle therapy

Rohling, Heide 21 July 2015 (has links) (PDF)
An increasing number of cancer patients is treated with proton beams or other light ion beams which allow to deliver dose precisely to the tumor. However, the depth dose distribution of these particles, which enables this precision, is sensitive to deviations from the treatment plan, as e.g. anatomical changes. Thus, to assure the quality of the treatment, a non-invasive in-vivo dose verification is highly desired. This monitoring of particle therapy relies on the detection of secondary radiation which is produced by interactions between the beam particles and the nuclei of the patient’s tissue. Up to now, the only clinically applied method for in-vivo dosimetry is Positron Emission Tomography which makes use of the beta+-activity produced during the irradiation (PT-PET). Since from a PT-PET measurement the applied dose cannot be directly deduced, the simulated distribution of beta+-emitting nuclei is used as a basis for the analysis of the measured PT-PET data. Therefore, the reliable modeling of the production rates and the spatial distribution of the beta+-emitters is required. PT-PET applied during instead of after the treatment is referred to as in-beam PET. A challenge concerning in-beam PET is the design of the PET camera, because a standard full-ring scanner is not feasible. For instance, a double-head PET camera is applicable, but low count rates and the limited solid angle coverage can compromise the image quality. For this reason, a detector system which provides a time resolution allowing the incorporation of time-of-flight information (TOF) into the iterative reconstruction algorithm is desired to improve the quality of the reconstructed images. Secondly, Prompt Gamma Imaging (PGI), a technique based on the detection of prompt gamma-rays, is currently pursued. Concerning the emissions of prompt gamma-rays during particle irradiation, experimental data is not sufficiently available, making simulations necessary. Compton cameras are based on the detection of incoherently scattered photons and are investigated with respect to PGI. Monte Carlo simulations serve for the optimization of the camera design and the evaluation of criteria for the selection of measured events. Thus, for in-beam PET and PGI dedicated detection systems and, moreover, profound knowledge about the corresponding radiation fields are required. Using various simulation codes, this thesis contributes to the modelling of the beta+-emitters and photons produced during particle irradiation, as well as to the evaluation and optimization of hardware for both techniques. Concerning the modeling of the production of the relevant beta+-emitters, the abilities of the Monte Carlo simulation code PHITS and of the deterministic, one-dimensional code HIBRAC were assessed. The Monte Carlo tool GEANT4 was applied for an additional comparison. For irradiations with protons, helium, lithium, and carbon, the depth-dependent yields of the simulated beta+-emitters were compared to experimental data. In general, PHITS underestimated the yields of the considered beta+-emitters in contrast to GEANT4 which provided acceptable values. HIBRAC was substantially extended to enable the modeling of the depth-dependent yields of specific nuclides. For proton beams and carbon ion beams HIBRAC can compete with GEANT4 for this application. Since HIBRAC is fast, compact, and easy to modify, it could be a basis for the simulations of the beta+-emitters in clinical application. PHITS was also applied to the modeling of prompt gamma-rays during proton irradiation following an experimental setup. From this study, it can be concluded that PHITS could be an alternative to GEANT4 in this context. Another aim was the optimization of Compton camera prototypes. GEANT4 simulations were carried out with the focus on detection probabilities and the rate of valid events. Based on the results, the feasibility of a Compton camera setup consisting of a CZT detector and an LSO or BGO detector was confirmed. Several recommendations concerning the design and arrangement of the Compton camera prototype were derived. Furthermore, several promising event selection strategies were evaluated. The GEANT4 simulations were validated by comparing simulated to measured energy depositions in the detector layers. This comparison also led to the reconsideration of the efficiency of the prototype. A further study evaluated if electron-positron pairs resulting from pair productions could be detected with the existing prototype in addition to Compton events. Regarding the efficiency and the achievable angular resolution, the successful application of the considered prototype as pair production camera to the monitoring of particle therapy is questionable. Finally, the application of a PET camera consisting of Resistive Plate Chambers (RPCs) providing a good time resolution to in-beam PET was discussed. A scintillator-based PET camera based on a commercially available scanner was used as reference. This evaluation included simulations of the detector response, the image reconstructions using various procedures, and the analysis of image quality. Realistic activity distributions based on real treatment plans for carbon ion therapy were used. The low efficiency of the RPC-based PET camera led to images of poor quality. Neither visually nor with the semi-automatic tool YaPET a reliable detectability of range deviations was possible. The incorporation of TOF into the iterative reconstruction algorithm was especially advantageous for the considered RPC-based PET camera in terms of convergence and artifacts. The application of the real-time capable back projection method Direct TOF for the RPCbased PET camera resulted in an image quality comparable to the one achieved with the iterative algorihms. In total, this study does not indicate the further investigation of RPC-based PET cameras with similar efficiency for in-beam PET application. To sum up, simulation studies were performed aimed at the progress of in-vivo dosimetry. Regarding the modeling of the beta+-emitter production and prompt gamma-ray emissions, different simulation codes were evaluated. HIBRAC could be a basis for clinical PT-PET simulations, however, a detailed validation of the underlying cross section models is required. Several recommendations for the optimization of a Compton Camera prototype resulted from systematic variations of the setup. Nevertheless, the definite evaluation of the feasibility of a Compton camera for PGI can only be performed by further experiments. For PT-PET, the efficiency of the detector system is the crucial factor. Due to the obtained results for the considered RPC-based PET camera, the focus should be kept to scintillator-based PET cameras for this purpose.
16

Nuclear methods for real-time range verification in proton therapy based on prompt gamma-ray imaging

Hueso González, Fernando 05 July 2016 (has links) (PDF)
Accelerated protons are excellent candidates for treating several types of tumours. Such charged particles stop at a defined depth, where their ionisation density is maximum. As the dose deposit beyond this distal edge is very low, proton therapy minimises the damage to normal tissue compared to photon therapy. Nonetheless, inherent range uncertainties cast doubts on the irradiation of tumours close to organs at risk and lead to the application of conservative safety margins. This constrains significantly the potential benefits of proton over photon therapy and limits its ultimate aspirations. Prompt gamma rays, a by-product of the irradiation that is correlated to the dose deposition, are reliable signatures for the detection of range deviations and even for three-dimensional in vivo dosimetry. In this work, two methods for Prompt Gamma-ray Imaging (PGI) are investigated: the Compton camera (Cc) and the Prompt Gamma-ray Timing (PGT). Their applicability in a clinical scenario is discussed and compared. The first method aspires to reconstruct the prompt gamma ray emission density map based on an iterative imaging algorithm and multiple position sensitive gamma ray detectors. These are arranged in scatterer and absorber plane. The second method has been recently proposed as an alternative to collimated PGI systems and relies on timing spectroscopy with a single monolithic detector. The detection times of prompt gamma rays encode essential information about the depth-dose profile as a consequence of the measurable transit time of ions through matter. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and OncoRay, detector components are characterised in realistic radiation environments as a step towards a clinical Cc. Conventional block detectors deployed in commercial Positron Emission Tomography (PET) scanners, made of Cerium-doped lutetium oxyorthosilicate - Lu2SiO5:Ce (LSO) or Bismuth Germanium Oxide - Bi4Ge3O12 (BGO) scintillators, are suitable candidates for the absorber of a Cc due to their high density and absorption efficiency with respect to the prompt gamma ray energy range (several MeV). LSO and BGO block detectors are compared experimentally in clinically relevant radiation fields in terms of energy, spatial and time resolution. On a different note, two BGO block detectors (from PET scanners), arranged as the BGO block Compton camera (BbCc), are deployed for simple imaging tests with high energy prompt gamma rays produced in homogeneous Plexiglas targets by a proton pencil beam. The rationale is to maximise the detection efficiency in the scatterer plane despite a moderate energy resolution. Target shifts, increase of the target thickness and beam energy variation experiments are conducted. Concerning the PGT concept, in a collaboration among OncoRay, HZDR and IBA, the first test at a clinical proton accelerator (Westdeutsches Protonentherapiezentrum Essen) with several detectors and heterogeneous phantoms is performed. The sensitivity of the method to range shifts is investigated, the robustness against background and stability of the beam bunch time profile is explored, and the bunch time spread is characterised for different proton energies. With respect to the material choice for the absorber of the Cc, the BGO scintillator closes the gap with respect to the brighter LSO. The reason behind is the high energies of prompt gamma rays compared to the PET scenario, which increase significantly the energy, spatial and time resolution of BGO. Regarding the BbCc, shifts of a point-like radioactive source are correctly detected, line sources are reconstructed, and one centimetre proton range deviations are identified based on the evident changes of the back projection images. Concerning the PGT experiments, for clinically relevant doses, range differences of five millimetres in defined heterogeneous targets are identified by numerical comparison of the spectrum shape. For higher statistics, range shifts down to two millimetres are detectable. Experimental data are well reproduced by analytical modelling. The Cc and the PGT are ambitious approaches for range verification in proton therapy based on PGI. Intensive detector characterisation and tests in clinical facilities are mandatory for developing robust prototypes, since the energy range of prompt gamma rays spans over the MeV region, not used traditionally in medical applications. Regarding the material choice for the Cc: notwithstanding the overall superiority of LSO, BGO catches up in the field of PGI. It can be considered as a competitive alternative to LSO for the absorber plane due to its lower price, higher photoabsorption efficiency, and the lack of intrinsic radioactivity. The results concerning the BbCc, obtained with relatively simple means, highlight the potential application of Compton cameras for high energy prompt gamma ray imaging. Nevertheless, technical constraints like the low statistics collected per pencil beam spot (if clinical currents are used) question their applicability as a real-time and in vivo range verification method in proton therapy. The PGT is an alternative approach, which may have faster translation into clinical practice due to its lower price and higher efficiency. A proton bunch monitor, higher detector throughput and quantitative range retrieval are the upcoming steps towards a clinically applicable prototype, that may detect significant range deviations for the strongest beam spots. The experimental results emphasise the prospects of this straightforward verification method at a clinical pencil beam and settle this novel approach as a promising alternative in the field of in vivo dosimetry. / Beschleunigte Protonen sind ausgezeichnete Kandidaten für die Behandlung von diversen Tumorarten. Diese geladenen Teilchen stoppen in einer bestimmten Tiefe, bei der die Ionisierungsdichte maximal ist. Da die deponierte Dosis hinter der distalen Kante sehr klein ist, minimiert die Protonentherapie den Schaden an normalem Gewebe verglichen mit der Photonentherapie. Inhärente Reichweitenunsicherheiten stellen jedoch die Bestrahlung von Tumoren in der Nähe von Risikoorganen in Frage und führen zur Anwendung von konservativen Sicherheitssäumen. Dadurch werden die potentiellen Vorteile der Protonen- gegenüber der Photonentherapie sowie ihre letzten Ziele eingeschränkt. Prompte Gammastrahlung, ein Nebenprodukt der Bestrahlung, welche mit der Dosisdeposition korreliert, ist eine zuverlässige Signatur um Reichweitenunterschiede zu detektieren und könnte sogar für eine dreidimensionale in vivo Dosimetrie genutzt werden. In dieser Arbeit werden zwei Methoden für Prompt Gamma-ray Imaging (PGI) erforscht: die Compton-Kamera (CK) und das Prompt Gamma-ray Timing (PGT)-Konzept. Des Weiteren soll deren Anwendbarkeit im klinischen Szenario diskutiert und verglichen werden. Die erste Methode strebt nach der Rekonstruktion der Emissionsdichtenverteilung der prompten Gammastrahlung und basiert auf einem iterativen Bildgebungsalgorithmus sowie auf mehreren positionsempfindlichen Detektoren. Diese werden in eine Streuer- und Absorberebene eingeteilt. Die zweite Methode ist vor Kurzem als eine Alternative zu kollimierten PGI Systemen vorgeschlagen worden, und beruht auf dem Prinzip der Zeitspektroskopie mit einem einzelnen monolithischen Detektor. Die Detektionszeiten der prompten Gammastrahlen beinhalten entscheidende Informationen über das Tiefendosisprofil aufgrund der messbaren Durchgangszeit von Ionen durch Materie. Am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) und OncoRay werden Detektorkomponenten in realistischen Strahlungsumgebungen als ein Schritt zur klinischen CK charakterisiert. Konventionelle Blockdetektoren, welche in kommerziellen Positronen-Emissions-Tomographie (PET)-Scannern zum Einsatz kommen und auf Cer dotiertem Lutetiumoxyorthosilikat - Lu2SiO5:Ce (LSO) oder Bismutgermanat - Bi4Ge3O12 (BGO) Szintillatoren basieren, sind geeignete Kandidaten für den Absorber einer CK wegen der hohen Dichte und Absorptionseffizienz im Energiebereich von prompten Gammastrahlen (mehrere MeV). LSO- und BGO-Blockdetektoren werden in klinisch relevanten Strahlungsfeldern in Bezug auf Energie-, Orts- und Zeitauflösung verglichen. Weiterhin werden zwei BGO-Blockdetektoren (von PET-Scannern), angeordnet als BGO Block Compton-Kamera (BBCK), benutzt, um die Bildgebung von hochenergetischen prompten Gammastrahlen zu untersuchen, die in homogenen Plexiglas-Targets durch einen Protonen-Bleistiftstrahl emittiert werden. Die Motivation hierfür ist, die Detektionseffizienz der Streuerebene zu maximieren, wobei jedoch die Energieauflösung vernachlässigt wird. Targetverschiebungen, sowie Änderungen der Targetdicke und der Teilchenenergie werden untersucht. In einer Kollaboration zwischen OncoRay, HZDR and IBA, wird der erste Test des PGT-Konzepts an einem klinischen Protonenbeschleuniger (Westdeutsches Protonentherapiezentrum Essen) mit mehreren Detektoren und heterogenen Phantomen durchgeführt. Die Sensitivität der Methode hinsichtlich Reichweitenveränderungen wird erforscht. Des Weiteren wird der Einfluss von Untergrund und Stabilität des Zeitprofils des Strahlenbündels untersucht, sowie die Zeitverschmierung des Bündels für verschiedene Protonenenergien charakterisiert. Für die Materialauswahl für den Absorber der CK ergibt sich, dass sich BGO dem lichtstärkeren LSO Szintillator angleicht. Der Grund dafür sind die höheren Energien der prompten Gammastrahlung im Vergleich zum PET Szenario, welche die Energie-, Orts- und Zeitauflösung von BGO stark verbessern. Anhand von offensichtlichen Änderungen der Rückprojektionsbilder zeigt sich, dass mit der BBCK Verschiebungen einer punktförmigen radioaktiven Quelle erfolgreich detektiert, Linienquellen rekonstruiert und Verschiebungen der Protonenreichweite um einen Zentimeter identifiziert werden. Für die PGT-Experimente können mit einem einzigen Detektor Reichweitenunterschiede von fünf Millimetern für definierte heterogene Targets bei klinisch relevanten Dosen detektiert werden. Dies wird durch den numerischen Vergleich der Spektrumform ermöglicht. Bei größerer Ereigniszahl können Reichweitenunterschiede von bis zu zwei Millimetern detektiert werden. Die experimentellen Daten werden durch analytische Modellierung wiedergegeben. Die CK und das PGT-Konzept sind ambitionierte Ansätze zur Verifizierung der Reichweite in der Protonentherapie basierend auf PGI. Intensive Detektorcharakterisierung und Tests an klinischen Einrichtungen sind Pflicht für die Entwicklung geeigneter Prototypen, da der Energiebereich prompter Gammastrahlung sich über mehrere MeV erstreckt, was nicht dem Normbereich der traditionellen medizinischen Anwendungen entspricht. Im Bezug auf die Materialauswahl der CK wird ersichtlich, dass BGO trotz der allgemeinen Überlegenheit von LSO für die Anwendung im Bereich PGI aufholt. Wegen des niedrigeren Preises, der höheren Photoabsorptionseffizienz und der nicht vorhandenen Eigenaktivität erscheint BGO als eine konkurrenzfähige Alternative für die Absorberebene der CK im Vergleich zu LSO. Die Ergebnisse der BBCK, welche mit relativ einfachen Mitteln gewonnen werden, heben die potentielle Anwendung von Compton-Kameras für die Bildgebung prompter hochenergetischer Gammastrahlen hervor. Trotzdem stellen technische Beschränkungen wie die mangelnde Anzahl von Messereignissen pro Bestrahlungspunkt (falls klinische Ströme genutzt werden) die Anwendbarkeit der CK als Echtzeit- und in vivo Reichweitenverifikationsmethode in der Protonentherapie in Frage. Die PGT-Methode ist ein alternativer Ansatz, welcher aufgrund der geringeren Kosten und der höheren Effizienz eine schnellere Umsetzung in die klinische Praxis haben könnte. Ein Protonenbunchmonitor, höherer Detektordurchsatz und eine quantitative Reichweitenrekonstruktion sind die weiteren Schritte in Richtung eines klinisch anwendbaren Prototyps, der signifikante Reichweitenunterschiede für die stärksten Bestrahlungspunkte detektieren könnte. Die experimentellen Ergebnisse unterstreichen das Potential dieser Reichweitenverifikationsmethode an einem klinischen Bleistiftstrahl und lassen diesen neuartigen Ansatz als eine vielversprechende Alternative auf dem Gebiet der in vivo Dosimetrie erscheinen.
17

Treatment verification in proton therapy based on the detection of prompt gamma-rays

Golnik, Christian 25 September 2017 (has links) (PDF)
Background The finite range of a proton beam in tissue and the corresponding steep distal dose gradient near the end of the particle track open new vistas for the delivery of a highly target-conformal dose distribution in radiation therapy. Compared to a classical photon treatment, the potential therapeutic benefit of a particle treatment is a significant dose reduction in the tumor-surrounding tissue at a comparable dose level applied to the tumor. Motivation The actually applied particle range, and therefor the dose deposition in the target volume, is quite sensitive to the tissue composition in the path of the protons. Particle treatments are planned via computed tomography images, acquired prior to the treatment. The conversion from photon stopping power to proton stopping power induces an important source of range-uncertainty. Furthermore, anatomical deviations from planning situation affect the accurate dose deposition. Since there is no clinical routine measurement of the actually applied particle range, treatments are currently planned to be robust in favor of optimal regarding the dose delivery. Robust planning incorporates the application of safety margins around the tumor volume as well as the usage of (potentially) unfavorable field directions. These pretreatment safety procedures aim to secure dose conformality in the tumor volume, however at the price of additional dose to the surrounding tissue. As a result, the unverified particle range constraints the principle benefit of proton therapy. An on-line, in-vivo range-verification would therefore bring the potential of particle therapy much closer to the daily clinical routine. Materials and methods This work contributes to the field of in-vivo treatment verification by the methodical investigation of range assessment via the detection of prompt gamma-rays, a side product emitted due to proton-tissue interaction. In the first part, the concept of measuring the spatial prompt gamma-ray emission profile with a Compton camera is investigated with a prototype system consisting of a CdZnTe cross strip detector as scatter plane and three side-by-side arranged, segmented BGO block detectors as absorber planes. In the second part, the novel method of prompt gamma-ray timing (PGT) is introduced. This technique has been developed in the scope of this work and a patent has been applied for. The necessary physical considerations for PGT are outlined and the feasibility of the method is supported with first proof-of-principle experiments. Results Compton camera: Utilizing a 22-Na source, the feasibility of reconstructing the emission scene of a point source at 1.275 MeV was verified. Suitable filters on the scatter-absorber coincident timing and the respective sum energy were defined and applied to the data. The source position and corresponding source displacements could be verified in the reconstructed Compton images. In a next step, a Compton imaging test at 4.44 MeV photon energy was performed. A suitable test setup was identified at the Tandetron accelerator at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. This measurement setup provided a monoenergetic, point-like source of 4.44 MeV gamma-rays, that was nearly free of background. Here, the absolute gamma-ray yield was determined. The Compton imaging prototype was tested at the Tandetron regarding (i) the energy resolution, timing resolution, and spatial resolution of the individual detectors, (ii) the imaging capabilities of the prototype at 4.44 MeV gamma-ray energy and (iii) the Compton imaging efficiency. In a Compton imaging test, the source position and the corresponding source displacements were verified in the reconstructed Compton images. Furthermore, via the quantitative gamma-ray emission yield, the Compton imaging efficiency at 4.44 MeV photon energy was determined experimentally. PGT: The concept of PGT was developed and introduced to the scientific community in the scope of this thesis. A theoretical model for PGT was developed and outlined. Based on the theoretical considerations, a Monte Carlo (MC) algorithm, capable of simulating PGT distributions was implemented. At the KVI-CART proton beam line in Groningen, The Netherlands, time-resolved prompt gamma-ray spectra were recorded with a small scale, scintillator based detection system. The recorded data were analyzed in the scope of PGT and compared to the measured data, yielding in an excellent agreement and thus verifying the developed theoretical basis. For a hypothetical PGT imaging setup at a therapeutic proton beam it was shown, that the statistical error on the range determination could be reduced to 5 mm at a 90 % confidence level for a single spot of 5x10E8 protons. Conclusion Compton imaging and PGT were investigated as candidates for treatment verification, based on the detection of prompt gamma-rays. The feasibility of Compton imaging at photon energies of several MeV was proven, which supports the approach of imaging high energetic prompt $gamma$-rays. However, the applicability of a Compton camera under therapeutic conditions was found to be questionable, due to (i) the low device detection efficiency and the corresponding limited number of valid events, that can be recorded within a single treatment and utilized for image reconstruction, and (ii) the complexity of the detector setup and attached readout electronics, which make the development of a clinical prototype expensive and time consuming. PGT is based on a simple time-spectroscopic measurement approach. The collimation-less detection principle implies a high detection efficiency compared to the Compton camera. The promising results on the applicability under treatment conditions and the simplicity of the detector setup qualify PGT as method well suited for a fast translation towards a clinical trial. / Hintergrund Strahlentherapie ist eine wichtige Modalität der therapeutischen Behandlung von Krebs. Das Ziel dieser Behandlungsform ist die Applikation einer bestimmten Strahlendosis im Tumorvolumen, wobei umliegendes, gesundes Gewebe nach Möglichkeit geschont werden soll. Bei der Bestrahlung mit einem hochenergetischen Protonenstrahl erlaubt die wohldefinierte Reichweite der Teilchen im Gewebe, in Kombination mit dem steilen, distalen Dosisgradienten, eine hohe Tumor-Konformalität der deponierten Dosis. Verglichen mit der klassisch eingesetzten Behandlung mit Photonen ergibt sich für eine optimiert geplante Behandlung mit Protonen ein deutlich reduziertes Dosisnivau im den Tumor umgebenden Gewebe. Motivation Die tatsächlich applizierte Reichweite der Protonen im Körper, und somit auch die lokal deponierte Dosis, ist stark abhängig vom Bremsvermögen der Materie im Strahlengang der Protonen. Bestrahlungspläne werden mit Hilfe eines Computertomographen (CT) erstellt, wobei die CT Bilder vor der eigentlichen Behandlung aufgenommen werden. Ein CT misst allerdings lediglich den linearen Schwächungskoeffizienten für Photonen in der Einheit Hounsfield Units (HU). Die Ungenauigkeit in der Umrechnung von HU in Protonen-Bremsvermögen ist, unter anderem, eine wesentliche Ursache für die Unsicherheit über die tatsächliche Reichweite der Protonen im Körper des Patienten. Derzeit existiert keine routinemäßige Methode, um die applizierte Dosis oder auch die Protonenreichweite in-vivo und in Echtzeit zu bestimmen. Um das geplante Dosisniveau im Tumorvolumen trotz möglicher Reichweiteunterschiede zu gewährleisten, werden die Bestrahlungspläne für Protonen auf Robustheit optimiert, was zum Einen das geplante Dosisniveau im Tumorvolumen trotz auftretender Reichweiteveränderungen sicherstellen soll, zum Anderen aber auf Kosten der möglichen Dosiseinsparung im gesunden Gewebe geht. Zusammengefasst kann der Hauptvorteil einer Therapie mit Protonen wegen der Unsicherheit über die tatsächlich applizierte Reichweite nicht wirklich realisiert. Eine Methode zur Bestimmung der Reichweite in-vivo und in Echtzeit wäre daher von großem Nutzen, um das theoretische Potential der Protonentherapie auch in der praktisch ausschöpfen zu können. Material und Methoden In dieser Arbeit werden zwei Konzepte zur Messung prompter Gamma-Strahlung behandelt, welche potentiell zur Bestimmung der Reichweite der Protonen im Körper eingesetzt werden können. Prompte Gamma-Strahlung entsteht durch Proton-Atomkern-Kollision auf einer Zeitskala unterhalb von Picosekunden entlang des Strahlweges der Protonen im Gewebe. Aufgrund der prompten Emission ist diese Form der Sekundärstrahlung ein aussichtsreicher Kandidat für eine Bestrahlungs-Verifikation in Echtzeit. Zum Einen wird die Anwendbarkeit von Compton-Kameras anhand eines Prototyps untersucht. Dabei zielt die Messung auf die Rekonstruktion des örtlichen Emissionsprofils der prompten Gammas ab. Zum Zweiten wird eine, im Rahmen dieser Arbeit neu entwickelte Messmethode, das Prompt Gamma-Ray Timing (PGT), vorgestellt und international zum Patent angemeldet. Im Gegensatz zu bereits bekannten Ansätzen, verwendet PGT die endliche Flugzeit der Protonen durch das Gewebe und bestimmt zeitliche Emissionsprofile der prompten Gammas. Ergebnisse Compton Kamera: Die örtliche Emissionsverteilung einer punktförmigen 22-Na Quelle wurde wurde bei einer Photonenenergie von 1.275 MeV nachgewiesen. Dabei konnten sowohl die absolute Quellposition als auch laterale Verschiebungen der Quelle rekonstruiert werden. Da prompte Gamma-Strahlung Emissionsenergien von einigen MeV aufweist, wurde als nächster Schritt ein Bildrekonstruktionstest bei 4.44 MeV durchgeführt. Ein geeignetes Testsetup wurde am Tandetron Beschleuniger am Helmholtz-Zentrum Dresden-Rossendorf, Deutschland, identifiziert, wo eine monoenergetische, punktförmige Emissionverteilung von 4.44 MeV Photonen erzeugt werden konnte. Für die Detektoren des Prototyps wurden zum Einen die örtliche und zeitliche Auflösung sowie die Energieauflösungen untersucht. Zum Anderen wurde die Emissionsverteilung der erzeugten 4.44 MeV Quelle rekonstruiert und die zugehörige Effizienz des Prototyps experimentell bestimmt. PGT: Für das neu vorgeschlagene Messverfahren PGT wurden im Rahmen dieser Arbeit die theoretischen Grundlagen ausgearbeitet und dargestellt. Darauf basierend, wurde ein Monte Carlo (MC) Code entwickelt, welcher die Modellierung von PGT Spektren ermöglicht. Am Protonenstrahl des Kernfysisch Verschneller Institut (KVI), Groningen, Niederlande, wurden zeitaufgelöste Spektren prompter Gammastrahlung aufgenommen und analysiert. Durch einen Vergleich von experimentellen und modellierten Daten konnte die Gültigkeit der vorgelegten theoretischen Überlegungen quantitativ bestätigt werden. Anhand eines hypothetischen Bestrahlungsszenarios wurde gezeigt, dass der statistische Fehler in der Bestimmung der Reichweite mit einer Genauigkeit von 5 mm bei einem Konfidenzniveau von 90 % für einen einzelnen starken Spot 5x10E8 Protonen mit PGT erreichbar ist. Schlussfolgerungen Für den Compton Kamera Prototyp wurde gezeigt, dass eine Bildgebung für Gamma-Energien einiger MeV, wie sie bei prompter Gammastrahlung auftreten, möglich ist. Allerdings erlaubt die prinzipielle Abbildbarkeit noch keine Nutzbarkeit unter therapeutischen Strahlbedingungen nicht. Der wesentliche und in dieser Arbeit nachgewiesene Hinderungsgrund liegt in der niedrigen (gemessenen) Nachweiseffizienz, welche die Anzahl der validen Daten, die für die Bildrekonstruktion genutzt werden können, drastisch einschränkt. PGT basiert, im Gegensatz zur Compton Kamera, auf einem einfachen zeit-spektroskopischen Messaufbau. Die kollimatorfreie Messmethode erlaubt eine gute Nachweiseffizienz und kann somit den statistischen Fehler bei der Reichweitenbestimmung auf ein klinisch relevantes Niveau reduzieren. Die guten Ergebnissen und die ausgeführten Abschätzungen für therapeutische Bedingungen lassen erwarten, dass PGT als Grundlage für eine Bestrahlungsverifiktation in-vivo und in Echtzeit zügig klinisch umgesetzt werden kann.
18

Development of a prompt γ-ray timing system including a proton bunch monitor for range verification in proton therapy

Permatasari, Felicia Fibiani 19 June 2023 (has links)
Treatment verification is demanded to mitigate the range uncertainties in proton therapy and, hence, to enhance treatment precision and outcomes. As a non-invasive approach for range verification, the prompt γ-ray timing (PGT) measures the time distribution of the promptly produced γ-rays using fast uncollimated scintillation detectors. However, the measured time spectra of the prompt γ-rays (PGs) are sensitive to phase instabilities between the accelerator radiofrequency (RF) used as the reference time and the actual arrival time of the therapeutic particles at the patient and require online monitoring of the arrival time of the proton bunches. Within this thesis, the development of a PGT system including an appropriate proton bunch monitor (PBM) for range verification in proton therapy was studied. In the first part of the work, two PBM options were explored and characterized under near-to-clinical beam conditions to find a suitable PBM satisfying the prerequisites and constraints for the application in the PGT-based range verification. The selected PBM prototype comprises scintillating fibers read out on both ends with silicon photomultipliers (SiPMs). By placing the PBM at the beam halo, sufficient counting statistics and processable trigger rates could be achieved for the monitoring of the proton bunch periodicity with reasonable statistical precision, while minimizing the interference to the clinical beam delivery. In the second part of the work, a proof-of-principle experiment of the PGT-based range verification with a heterogeneous target was performed together with online monitoring of the proton bunch instabilities. The sensitivity and the overall uncertainty of the PGT technique were evaluated for two proton energies, different thicknesses of air cavity inserts, various tissue-equivalent material inserts, different selections of the PG energy window, and other PGT parameters. The experimental results confirmed that real-time monitoring of the proton range during treatment using the PGT technique is feasible with millimeter precision and submillimeter accuracy at close-to-clinical beam currents and clinically relevant proton energies. The integration of the PBM to the PGT-based range verification marks another important step toward the clinical application of the PGT technique for in vivo verification and qualitative assessment of the proton range during treatment.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography / Die Verifikation der Behandlung ist erforderlich, um die Reichweiteunsicherheiten in der Protonentherapie zu verringern und damit die Behandlungspräzision und die Behandlungsergebnisse zu verbessern. Das Prompt-γ-Ray-Timing (PGT) ist eine nicht-invasive Methode zur Reichweitenverifizierung, bei der die Zeitverteilung der prompt erzeugten γ-Strahlung mit schnellen, nicht-kollimierten Szintillationsdetektoren detektiert wird. Die gemessenen Zeitspektren der prompten γ-Strahlung (PGs) sind jedoch empfindlich gegenüber Phaseninstabilitäten zwischen der als Referenzzeit verwendeten Radiofrequenz (RF) des Beschleunigers und der tatsächlichen Ankunftszeit der therapeutischen Teilchen am Patienten und erfordern eine Online-Überwachung der Ankunftszeit der Protonenmikropulse. Im Rahmen dieser Arbeit wurde die Entwicklung eines PGT-Systems einschließlich eines geeigneten Proton-Bunch-Monitors (PBMs) für die Reichweitenverifikation in der Protonentherapie untersucht. Im ersten Teil der Arbeit wurden zwei PBM-Optionen untersucht und unter kliniknahen Strahlbedingungen charakterisiert, um einen PBM, der die Voraussetzungen und Einschränkungen für die Anwendung in der PGT-basierten Reichweitenverifikation erfüllt, auszuwählen. Der ausgewählte PBM-Prototyp besteht aus szintillierenden Fasern, die an beiden Enden mit Silizium-Photomultipliern (SiPMs) ausgelesen werden. Durch die Platzierung des PBMs im Strahlhalo konnten ausreichende Zählstatistiken und verarbeitbare Triggerraten für die Überwachung der Periodizität der Protonenmikropulse mit einer angemessenen statistischen Genauigkeit erreicht werden, während gleichzeitig die Beeinträchtigung der klinischen Strahlapplikation minimiert wird. Im zweiten Teil der Arbeit wurde der experimentelle Machbarkeitsnachweis für die PGT-basierte Reichweitenverifikation in einem heterogenen Target zusammen mit der Online-Überwachung der Instabilitäten der Protonenmikropulse erbracht. Die Empfindlichkeit und die Gesamtunsicherheit der PGT-Technik wurden für zwei Protonenenergien, unterschiedliche Dicken der Lufthohlraumeinsätze, verschiedene gewebeäquivalente Materialeinsätze, andere Auswahlen der PG-Energiefenster und weitere PGT-Parameter quantifiziert. Die experimentellen Ergebnisse bestätigten, dass die Echtzeitüberwachung der Protonenreichweite während der Behandlung mit Hilfe der PGT-Technik mit Millimeterpräzision und Submillimetergenauigkeit bei kliniknahen Strahlströmen und klinisch relevanten Protonenenergien möglich ist. Die Integration des PBMs in die PGT-basierten Reichweitenverifizierung ist ein weiterer wichtiger Schritt auf dem Weg zur klinischen Anwendung der PGT-Technik für die In-vivo-Reichweitenüberprüfung und die qualitative Bewertung der Protonenreichweite während der Behandlung.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography
19

Measurements of prompt photon photoproduction at HERA

Lee, Sung Won January 2000 (has links)
No description available.
20

Design, construction, and characterization of a neutron depth profiling facility at the Oregon State University TRIGA�� reactor with an advanced digital spectroscopy system

Robinson, Joshua A. 13 July 2012 (has links)
In this work, Neutron Depth Profiling (NDP) analysis capability has been added to the Oregon State University TRIGA�� Reactor Prompt Gamma Neutron Activation Analysis Facility (PGNAA). This system has been implemented with an advanced digital spectroscopy system and is capable of rise time pulse shape analysis as well as coincidence measurements from multiple detectors. The digital spectroscopy system utilizes a high-speed multichannel digitizer with speeds up to 200 Megasamples/second (MS/s) with advanced hardware trigger and time stamping capabilities. These additions allow the facility to conduct simultaneous NDP and PGNAA combined measurements, which also enables cross calibration. The digital pulse processing is implemented with software programmed rise time pulse shape analysis capabilities for the analysis of the detector responses on a pulse-by-pulse basis to distinguish between different interactions in the detector. The advanced trigger capabilities of the digitizer were configured to accurately measure and correct for dead time effects from pulse pile up and preamplifier decay time. / Graduation date: 2013

Page generated in 0.0461 seconds