• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 99
  • 58
  • 33
  • 32
  • 23
  • 10
  • 10
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 311
  • 87
  • 80
  • 79
  • 69
  • 67
  • 65
  • 61
  • 60
  • 57
  • 56
  • 50
  • 48
  • 46
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Efficiency Improvement Strategies and Control of Permanent Magnet Motor Drives

Kshirsagar, Parag Mahendra 24 November 2015 (has links)
Permanent magnet brushless dc (PMBDC) and synchronous machines (PMSM) drives are favored in variable speed applications for their high efficiency operation. Energy efficiency improvement in such motor drives is of interest in recent times because of rising cost of energy. Accordingly, two current control options for improving efficiency of these drives are taken for study and they are; (i) injecting sinusoidal and non-sinusoidal currents in PMBDC machines and (ii) lowering switching frequency of inverter driving the PMSM but without having significant low ordered sidebands of currents. Both these methods are applicable to existing types of permanent magnet motors and hence do not upset their existing optimized designs. / Ph. D.
142

A High-efficiency Isolated Hybrid Series Resonant Microconverter for Photovoltaic Applications

Zhao, Xiaonan 12 January 2016 (has links)
Solar energy as one type of the renewable energy becomes more and more popular which has led to increase the photovoltaic (PV) installations recently. One of the PV installations is the power conditioning system which is to convert the maximum available power output of the PV modules to the utility grid. Single-phase microinverters are commonly used to integrate the power to utility grid in modular power conditioning system. In the two-stage microinverter, each PV module is connected with a power converter which can transfer higher output power due to the tracking maximum power point (MPP) capability. However, it also has the disadvantages of lower power conversion efficiency due to the increased number of power electronics converters. The primary objective of this thesis is to develop a high-efficiency microconverter to increase the output power capability of the modular power conditioning systems. A topology with hybrid modes of operation are proposed to achieve wide-input regulation while achieving high efficiency. Two operating modes are introduced in details. Under high-input conditions, the converter acts like a buck converter, whereas the converter behaves as a boost converter under low-input conditions. The converter operates as the series resonant converter with normal-input voltage to achieve the highest efficiency. With this topology, the converter can achieve zero-voltage switching (ZVS) and/or zero-current switching (ZCS) of the primary side MOSFETs, ZCS and/or ZVS of the secondary side MOSFETs and ZCS of output diodes under all operational conditions. The experimental results based on a 300 W prototype are given with 98.1% of peak power stage efficiency and 97.6% of weighted California Energy Commission (CEC) efficiency including all auxiliary and control power under the normal-input voltage condition. / Master of Science
143

Unified zero-current-transition techniques for high-power three-phase PWM inverters

Li, Yong 18 April 2002 (has links)
This dissertation is devoted to a unified and comprehensive study of zero-current-transition (ZCT) soft-switching techniques for high-power three-phase PWM inverter applications. Major efforts in this study are as follows: 1) Conception of one new ZCT scheme and one new ZCT topology; 2) Systematic comparison of a family of ZCT inverters; 3) Design, implementation and experimental evaluation of two 55-kW prototype inverters for electric vehicle (EV) motor drives that are developed based on the proposed ZCT concepts; and 4) Investigation of the ZCT concepts in megawatts high-frequency power conversions. The proposed ZCT techniques are also applicable to three-phase power-factor-correction (PFC) rectifiers. In order to minimize switching losses, this work first proposes a new control scheme for an existing three-phase ZCT inverter circuit that uses six auxiliary switches. The proposed scheme, called the six-switch ZV/ZCT, enables all main switches, diodes and auxiliary switches to be turned off under zero-current conditions, and in the meantime provides an opportunity to achieve zero-voltage turn-on for the main switches. Meanwhile, it requires no modification to normal PWM algorithms. Compared with existing ZCT schemes, the diode reverse-recovery current is reduced significantly, the switching turn-on loss is reduced by 50%, the resonant capacitor voltage stress is reduced by 30%, and the current and thermal stresses in the auxiliary switches are evenly distributed. However, a big drawback of the six-switch ZV/ZCT topology, as well as of other types of soft-switching topologies using six auxiliary switches, is the high cost and large space associated with the auxiliary switches. To overcome this drawback, this work further proposes a new three-phase ZCT inverter topology that uses only three auxiliary switches-- the three-switch ZCT. The significance of the proposed three-switch ZCT topology is that, among three-phase soft-switching inverters developed so far, this is the only one that uses fewer than six auxiliary switches and still has the following three features: 1) soft commutation for all main switches, diodes and auxiliary switches in all operation modes; 2) no modification to normal PWM algorithms; and 3) in practical implementations, no need for extra resonant current sensing, saturable cores, or snubbers to protect the auxiliary switches. The proposed six-switch ZV/ZCT and three-switch ZCT inverters, together with existing ZCT inverters, constitute a family of three-phase ZCT inverters. To explore the fundamental properties of these inverters, a systematic comparative study is conducted. A simplified equivalent circuit is developed to unify common traits of ZCT commutations. With the visual aid of state planes, the evolution of the family of ZCT inverters is examined, and their differences and connections are identified. Behaviors of individual inverters, including switching conditions, circulating energy, and device/component stresses, are compared. Based on the proposed six-switch ZV/ZCT and three-switch ZCT techniques, two 55-kW prototype inverters for EV traction motor drives have been built and tested to the full-power level with a closed-loop controlled induction motor dynamometer. The desired ZCT soft-switching features are realized together with motor drive functions. A research effort is carried out to develop a systematic and practical design methodology for the ZCT inverters, and an experimental evaluation of the ZCT techniques in the EV motor drive application is conducted. The design approach integrates system optimization with characterizations of the main IGBT device under the ZCT conditions, selection, testing and characterization of the auxiliary devices, design and selection of the resonant inductors and capacitors, inverter loss modeling and numerical analysis, system-level operation aspects, and layout and parasitic considerations. Different design aspects between these two ZCT inverters are compared and elaborated. The complexity of the 55-kW prototype implementations is compared as well. Efficiencies are measured and compared under a group of torque/speed points for typical EV drive cycles. Megawatts high-frequency power conversion is another potential application of the ZCT techniques. The integrated gate commutated thyristor (IGCT) device is tested and characterized under the proposed six-switch ZV/ZCT condition, and the test shows promising results in reducing switching losses and stresses. Improvements in the IGCT switching frequency and simplification of the cooling requirements under ZCT operations are discussed. In addition, a generalized ZCT cell concept is developed based on the proposed three-switch ZCT topology. This concept leads to the discovery of a family of simplified multilevel soft-switching inverters that reduce the number of auxiliary switches by half, and still maintain desirable features. / Ph. D.
144

Driver Based Soft Switch for Pulse-Width-Modulated Power Converters

Yu, Huijie 17 March 2005 (has links)
The work in this dissertation presents the first attempt in the literature to propose the concept of "soft switch". The goal of "soft switch" is to develop a standard PWM switch cell with built-in adaptive soft switching capabilities. Just like a regular switch, only one PWM signal is needed to drive the soft switch under soft switching condition. The core technique in soft switch development is a built-in adaptive soft switching circuit with minimized circulation energy. The necessity of minimizing circulation energy is first analyzed. The design and implementation of a universal controller for implementation of variable timing control to minimize circulation energy is presented. The controller has been tested successfully with three different soft switching inverters for electric vehicles application in the Partnership for a New Generation Vehicles (PNGV) project. To simplify the control, several methods to achieve soft switching with fixed timing control are proposed by analyzing a family of zero-voltage switching converters. The driver based soft switch concept was originated from development of a base driver circuit for current driven bipolar junction transistor (BJT). A new insulated-gate-bipolar-transistor (IGBT) and power metal-oxide-semiconductor field-effect-transistor (MOSFET) gated transistor (IMGT) base drive structure was initially proposed for a high power SiC BJT. The proposed base drive method drives SiC BJTs in a way similar to a Darlington transistor. With some modification, a new base driver structure can adaptively achieve zero voltage turn-on for BJT at all load current range with one single gate. The proposed gate driver based soft switching method is verified by experimental test with both Si and SiC BJT. The idea is then broadened for "soft switch" implementation. The whole soft switched BJT (SSBJT) structure behaves like a voltage-driven soft switch. The new structure has potentially inherent soft transition property with reduced stress and switching loss. The basic concept of the current driven soft switch is then extended to a voltage-driven device such as IGBT and MOSFET. The key feature and requirement of the soft switch is outlined. A new coupled inductor based soft switching cell is proposed. The proposed zero-voltage-transition (ZVT) cell serves as a good candidate for the development of soft switch. The "Equivalent Inductor" and state plane based analysis method are used to simply the analysis of coupled inductor based zero-voltage switching scheme. With the proposed analysis method, the operational property of the ZVT cell can be identified without solving complicated differential equations. Detailed analysis and design is proposed for a 3kW boost converter example. With the proposed soft switch design, the boost converter can achieve up to 98.9% efficiency over a wide operation range with a single gate drive. A high power inverter with coupled inductor scheme is also designed with simple control compared to the earlier implementation. A family of soft-switching converters using the proposed "soft switch" cell can be developed by replacing the conventional PWM switch with the proposed soft switch. / Ph. D.
145

Improved Forward Topologies for DC-DC applications with Built-in Input Filter

Leu, Ching-Shan 31 January 2006 (has links)
Among PWM power conversion topologies, the single-switch forward topology is the one that has been most widely used for decades. Its popularity has been based on many factors, including its low cost, circuit simplicity and high efficiency. However, several issues need to be addressed when using the forward converter such as the core reset, the voltage spikes caused by the transformer leakage inductance, and the pulsating input current waveform. The transformer is driven in a unidirectional fashion in the forward converter; a tertiary forward converter (TFC) is an example of this. Therefore, the third winding and reset diode must be provided with an adequate period of reset time so that the flux can be fully reset by the end of each switching cycle to prevent core saturation. Also, due to the utilization of a transformer, leakage inductances cannot be avoided. The energy stored in the leakage inductance during current ramp-up is not transferred to the load, and is not recovered during its discharge phase. As a result, the VDS waveform has a voltage spike and undesirable high-frequency oscillation. Therefore, a higher voltage-rating switch should be used to reduce the risk of high-voltage breakdown. Although a switch with amply high voltage ratings is available, it would tend to have a higher on-resistance, RDS(ON), resulting in increased conduction losses. Moreover, selection of a switch with higher voltage ratings than necessary may needlessly increase the cost of the design. Usually an additional circuit such as a snubber circuit or a clamp circuit or the soft-switching technique is used to absorb these voltage spikes. Consequently, the leakage inductance is intentionally minimized in the PWM power conversion technique so that it will not degrade the circuit performance. In contrast, the leakage inductance of the transformer may enhance rather than detract from circuit performance with a resonant power conversion technique. To date, however, no single-switch forward converter has been claimed to be able to enhance the converter performance with the PWM power conversion technique by utilizing the leakage inductance. Therefore, research on the utilization of the transformer leakage inductance in the PWM forward converter is needed. Two techniques, input current ripple reduction and an embedded filter, are proposed to enhance the performance of forward converter using the PWM technique. By inserting a capacitor between two primary windings of the TFC, an input current ripple reduction technique is proposed and a forward converter with ripple reduction (FRR) is presented in this research work. Because the voltage of the capacitor is clamped to input voltage, the capacitor becomes a second voltage source to share part of the load current. As a result, the input current ripple is reduced. Moreover, the capacitor voltage is clamped both at the static and dynamic states; thus the excessive voltage stress on the main switch S1 of the FAC during low-line to high-line step transient is eliminated. Furthermore, without an external LC filter, the EMI noise levels can be further reduced as a result of the embedded notch filter formed by the transformer leakage inductance and clamp capacitor if the notch frequency is designed to be the same as the switching frequency. With the help of the clamp capacitor, therefore, the leakage inductance can enhance rather than detract from the converter performance. The input current ripple can be reduced further by employing the proposed techniques. Two sets of the clamp capacitors and the leakage inductances are utilized, and the current ripple can even be cancelled if the condition is met. Consequently, the input current becomes a non-pulsating waveform and a forward converter with ripple cancellation (FRC) is presented. Moreover, without an external LC filter, the EMI noise levels can be further attenuated as a result of the embedded low-pass filter formed by the transformer leakage inductances and clamp capacitors. Again, the leakage inductance can enhance the converter performance just as the resonant converter does. In addition to providing the analysis and design procedure, this work verifies the performance of the presented converters, the FRR and the FRC, by the experimental results. By employing the proposed techniques, eight new topologies have been extended for different power conversion applications. Each member of the FRR and the FRC families is able to enhance the converter performance, in ways such as the elimination of the voltage spikes on the main switch without a snubber circuit and the improvement of the EMI performance with small filter components. Consequently, the cost can be reduced and the space of the converter can be saved. / Ph. D.
146

Design and Analysis of Switching Circuits for Energy Harvesting in Piezostrutures

Kim, Woon Kyung 21 August 2012 (has links)
This study deals with a general method for the analysis of a semi-active control technique for a fast-shunt switching system. The benefit of the semi-active system is the reduction in power consumption, which is a significant disadvantage of a fully active system compared with a passive system. A semi-active system under consideration is a semi-actively shunted piezoelectric system, which converts the strain energy into electrical energy through strong electromechanical coupling achieved though the piezoelectric phenomenon. Our proposed semi-active approach combines a PZT-based energy harvesting with a fast switching system driven by a Pulse-Width Modulated (PWM) signal. The fast switching system enables continuous adaptation of vibration energy control/harvesting by varying the PWM duty cycle. This contrasts with a conventional capacitance switching system that can only change the capacitance at discrete values. The analysis of the current piezoelectric system combined with a fast-switching system poses a considerable challenge as it contains both continuous and discrete characteristics. The study proposes an enhanced averaging method for analyzing the piecewise linear system. The simulation of the averaged system is much faster than that of the time-varying system. Moreover, the analysis derives error bounds that characterize convergence in the time domain of the averaged system to the original system. The dissertation begins with the derivation of the equations governing the physics of a piezostructure combined with an electrical switching shunt network. The results of the averaging analysis and numerical simulation are presented in order to provide a basis for estimating the structural responses that range between open- and short-circuit conditions which constitutes two limiting conditions. An experimental study demonstrates that the capacitive shunt bimorph piezostructure coupled with a single switch can be adjusted continuously by varying the PWM duty cycle. And the behavior of such hybrid system can be well predicted by the averaging analysis. / Ph. D.
147

Soft-switching techniques for high-power PWM converters

Mao, Hengchun 05 October 2007 (has links)
Soft-switching techniques can significantly reduce the switching loss and switching stresses of the power semiconductor devices in a power converter. This work presents several soft-switching topologies for high power PWM converters. These new topologies achieve soft-switching functions with minimum increase of device voltage/current stresses and converter circulating energy, and thus have advantages over conventional techniques in efficiency, power density, reliability, and cost of power converters. The improved zero-current transition (ZCT) converters achieve zero-current switching at both turn-on and turn-off for all main switches and auxiliary switches. These converters significantly reduce the switching loss and stress of the power semiconductor devices, while have a voltage/current stress and circulating energy similar to a PWM converter’s. The analysis, design, and experimental verification are presented. The three-phase zero-voltage transition (ZVT) boost rectifiers/voltage source inverters are developed with simple auxiliary circuits. Unlike most existing three-phase soft-switching techniques, these new topologies achieve soft-switching functions without overcharging the resonant inductors, and realize the benefits of soft-switching operation with minimum extra main switch turn-offs and fixed auxiliary circuit control timing. The operation principles of the developed techniques are experimentally verified, and their efficiency performances are evaluated with experiments and computer simulation. The three-phase ZVT buck rectifier topologies developed in this work achieves zero-voltage turn-on for all main switches with an optimum modulation schemes and simple auxiliary circuits. The auxiliary circuits, which are connected directly to each main switch, can also absorb the parasitic resonance of the bridge arms, and keep the voltage stress of the power devices at the minimum. The analysis and simulation results are presented to verify the converter operation. New ZVT dc-link schemes for three-phase ac-dc-ac converters are investigated. With coordinated control of the ac-dc converter and the dc-ac converter, a set of simple auxiliary circuit can provide soft-switching function for all switches in both the ac-dc converter and the dc-ac converter. The power loss in the auxiliary circuit is also significantly lower than existing dc-link soft-switching schemes. Simulation with experimentally obtained device switching loss data proves that significant efficiency improvement can be achieved with the new ZVT dc-link techniques. New ZVT and ZCT techniques for three-level converters are also developed. The auxiliary circuits are not in the main power path, and allow the converters to be controlled with optimum PWM schemes. Analysis and simulation results are presented to demonstrate the operation principles and advantages of soft switching in three-level converters. / Ph. D.
148

Development of a Temperature Controlled Cell for Surface Enhanced Raman Spectroscopy for in situ Detection of Gases

Appelblad, André January 2014 (has links)
This work describes a master’s thesis in engineering physics at Umeå University carried out during the spring semester of 2014. In the thesis the student has constructed and tested a temperature controlled cell for cooling/heating of surface-enhanced-Raman-spectroscopy (SERS) substrates for rapid detection of volatile substances. The thesis was carried out at the Swedish Defence Research Agency (FOI) in Umeå, Sweden. A Linkam Scientific Instruments TS1500 cell was equipped with a Peltier element for cooling/heating and a thermistor temperature sensor. A control system was constructed, based on an Arduino Uno microcontroller board and a pulse-width-modulated (PWM) H-bridge motor driver to control the Peltier element using a proportional-integral (PI) control algorithm. The temperature controlled cell was able to regulate the temperature of a SERS substrate within -15 to +110 °C and maintain the temperature over prolonged periods at ±0.22 °C of the set point temperature. Gas phase of 2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethane (isoflurane) was flowed through the cell and SERS spectra were collected at different temperatures and concentrations. This test showed that the signal is increased when the substrate is cooled and reversibly decreased when the substrate was heated. Keywords: temperature control, Raman scattering, surface enhanced Raman spectroscopy SERS, SERS substrate, volatile substances, Peltier module, thermistor, PWM, H-bridge, PI(D) control. / Detta dokument beskriver ett examensarbete för civilingenjörsexamen i teknisk fysik vid Umeå Universitet som utförts under vårterminen 2014. I examensarbetet har en kyl-/värmecell för temperaturkontroll av substratytor för ytförstärkt ramanspektroskopi (SERS) för snabb detektion av farliga flyktiga ämnen konstruerats och testats. Arbetet utfördes vid Totalförsvarets forskningsinstitut (FOI) i Umeå, Sverige. Utgångspunkten var ett Linkam Scientific Instruments TS1500 mikroskopsteg, vilket utrustades med ett Peltierelement för kylning/värmning och en termistor för temperaturövervakning. Ett styrsystem baserat på ett Arduino Uno mikrostyrenhetskort konstruerades med ett motordrivkort (H-brygga) vilket använder pulsbreddsmodulering (PWM) för att reglera spänningen till Peltierelementet utifrån en PI-regulator. Den färdiga cellen klarade att reglera temperaturen på ett SERS-substrat i ett temperaturspann på ungefär -15 till +110 °C med en temperaturstabilitet på ±0.22 °C av måltemperaturen. Cellen testades sedan på flyktiga ämnen för att visa dess funktion. Difluorometyl-2,2,2-trifluoro-1-kloroetyleter (isofluran) i gasfas, med instrumentluft som bärargas, flödades genom cellen och SERS-spektra erhölls vid olika koncentrationer och temperaturer. Vid samtliga koncentrationer visades att lägre temperatur ger ökad signalstyrka. När ytan sedan värmdes upp sjönk signalen reversibelt tillbaka till ursprungsvärdet. Nyckelord: temperaturkontroll, ytförstärkt ramanspektroskopi, SERS, flyktiga ämnen, Peltierelement, thermistor, PWM, H-brygga, PI(D)-regulator.
149

Optimised space vector modulation for variable speed drives / MLI vectorielle optimisée pour les variateurs de vitesse

Khan, Hamid 06 November 2012 (has links)
Le travail effectué au cours de cette thèse consiste à étudier et développer des techniques innovantes de modulation de largeurs d'impulsions (MLI) qui visent à optimiser les chaînes de traction électriques embarquées dans des véhicules hybrides ou électriques. La MLI joue un rôle stratégique au coeur des variateurs de vitesse, elle influe sur le comportement général de la chaîne de traction et sur sa performance. La MLI présente des degrés de liberté qui peuvent contribuer avantageusement à redimensionner les composants du variateur tels que le circuit de refroidissement, le filtre EMI et le condensateur du bus continu. Les véhicules hybrides constituent une étape naturelle dans la transition énergétique entre les véhicules thermiques et les véhicules électriques. Notre étude contribue à l'optimisation des variateurs de vitesse en général et ceux au coeur des véhicules hybrides ou électriques en particulier. Notre apport consiste à proposer une MLI performante afin de rendre le variateur plus léger et plus compacte tout en garantissant les fonctionnalités traditionnelles. La compétitivité de ces variateurs et par conséquent des véhicules hybrides ou électriques devient alors accessible. Les véhicules hybrides ou électriques utilisent généralement une machine de traction à courant alternatif en raison de nombreux avantages que celle ci présente par rapport à une machine à courant continu. La source d’alimentation au bord d'un véhicule est une batterie, il est donc nécessaire d'utiliser un onduleur pour transformer la tension continue en tension alternative à amplitude et fréquence variables. Le contrôle de cet onduleur est réalisé par des techniques de modulation de largeurs d'impulsions (MLI) ce qui permet ainsi de réguler le couple de la machine. Les techniques MLI produisent une composante basse fréquence, le fondamental qui est le signal désiré et des composantes hautes fréquences appelées harmoniques de commutation qui sont indésirables. Dans les véhicules modernes, il y a de plus en plus de charges mécaniques pilotées par des machines électriques et des systèmes électroniques. Il est impératif d'éliminer le risque d'interférences électromagnétiques entre ces différents systèmes pour éviter le dysfonctionnement ou la défaillance. Il faut donc filtrer ces harmoniques indésirables pour qu'elles ne perturbent pas les calculateurs et autres circuits électroniques de faibles niveaux de tensions. Il existe des techniques de modulation aléatoire (RPWM) qui permettent d'étaler les harmoniques à la fréquence de commutation et ses multiples. Dans cette étude, notre choix s’est porté sur la technique de modulation vectorielle aléatoire (RSVM) qui présente plusieurs avantages par rapport à la MLI intersective. Les machines pilotées par une MLI produisent des tensions de mode commun dites « shaft voltage », qui peuvent provoquer des courants à travers les roulements de la machine, ces derniers pouvant être destructifs. Nous avons pu développer une technique MLI vectorielle basée sur un choix judicieux des vecteurs nuls pour réduire cette tension de mode commun. La chaleur produite par les pertes dans les convertisseurs à commutation dure lors de l'ouverture et de la fermeture des interrupteurs doit être évacuée rapidement, ce qui réduit le stress thermique, évite la défaillance et augmente la durée de vie des interrupteurs. Une technique utilisée pour réduire ces pertes par commutation est la modulation discontinue (DPWM) ; une amélioration est apportée à cette technique dans ce travail. Cette amélioration est présentée sous forme d'une technique discontinue évolutive (EDSVM) qui s'adapte au régime du moteur pour minimiser les pertes. Grâce à cette technique une meilleure distribution du stress thermique sur les différents bras de l'onduleur est rendue possible et permet ainsi d'augmenter la durée de vie de l'onduleur. (...) / The dissertation documents research work carried out on Pulse Width Modulation (PWM) strategies for hard switched Voltage Source Inverters (VSI) for variable speed electric drives. This research is aimed at Hybrid Electric Vehicles (HEV). PWM is at the heart of all variable speed electric drives; they have a huge influence on the overall performance of the system and may also help eventually give us an extra degree of freedom in the possibility to rethink the inverter design including the re-dimensioning of the inverter components.HEVs tend to cost more than conventional internal combustion engine (ICE) vehicles as they have to incorporate two traction systems, which is the major discouraging factor for consumers and in turn for manufacturers. The two traction system increases the maintenance cost of the car as well. In addition the electric drives not only cost extra money but space too, which is already scarce with an ICE under the hood. An all-electric car is not yet a viable idea as the batteries have very low energy density compared with petrol or diesel and take considerable time to charge. One solution could be to use bigger battery packs but these add substantially to the price and weight of the vehicle and are not economically viable. To avoid raising the cost of such vehicles to unreasonably high amounts, autonomy has to be compromised. However hybrid vehicles are an important step forward in the transition toward all-electric cars while research on better batteries evolves. The objective of this research is to make electric drives suitable for HEVs i.e. lighter, more compact and more efficient -- requiring less maintenance and eventually at lower cost so that the advantages, such as low emissions and better fuel efficiency, would out-weigh a little extra cost for these cars. The electrical energy source in a vehicle is a battery, a DC Voltage source, and the traction motor is generally an AC motor owing to the various advantages it offers over a DC motor. Hence the need for a VSI, which is used to transform the DC voltage into AC voltage of desired amplitude and frequency. Pulse width modulation techniques are used to control VSI to ensure that the required/calculated voltage is fed to the machine, to produce the desired torque/speed. PWM techniques are essentially open loop systems where no feedback is used and the instantaneous values differ from the required voltage, however the same average values are obtained. Pulse width modulated techniques produce a low frequency signal (desired average value of the switched voltage) also called the fundamental component, along with unwanted high frequency harmonics linked to the carrier signal frequency or the PWM period. In modern cars we see more and more mechanical loads driven by electricity through digital processors. It is very important to eliminate the risk of electromagnetic interference between these systems to avoid failure or malfunction. Hence these unwanted harmonics have to be filtered so that they do not affect the electronic control unit or other susceptible components placed in the vicinity. Randomised modulation techniques (RPWM) are used to dither these harmonics at the switching frequency and its multiple. In this thesis a random modulator based on space vector modulation is presented which has additional advantages of SVM. Another EMI problem linked to PWM techniques is that they produce common mode voltages in the load. For electric machines, common mode voltage produces shaft voltage which in turn provokes dielectric stress on the motor bearings, its lubricant and hence the possibility of generating bearing currents in the machine that can be fatal for the machine. To reduce the common mode voltage a space vector modulation strategy is developed based on intelligent placement of zero vectors. (...)
150

Predição computacional de sítios de ligação de fatores de transcrição baseada em gramáticas regulares estocásticas / Computational prediction of transcription factor binding sites based on stochastic regular grammars

Ferrão Neto, Antonio 27 October 2017 (has links)
Fatores de transcrição (FT) são proteínas que se ligam em sequências específicas e bem conservadas de nucleotídeos no DNA, denominadas sítios de ligação dos fatores de transcrição (SLFT), localizadas em regiões de regulação gênica conhecidas como módulos cis-reguladores (CRM). Ao reconhecer o SLFT, o fator de transcrição se liga naquele sítio e influencia a transcrição gênica positiva ou negativamente. Existem técnicas experimentais para a identificação dos locais dos SLFTs em um genoma, como footprinting, ChIP-chip ou ChIP-seq. Entretanto, a execução de tais técnicas implica em custos e tempo elevados. Alternativamente, pode-se utilizar as sequências de SLFTs já conhecidas para um determinado fator de transcrição e aplicar técnicas de aprendizado computacional supervisionado para criar um modelo computacional para tal sítio e então realizar a predição computacional no genoma. Entretanto, a maioria das ferramentas computacionais existentes para esse fim considera independência entre as posições entre os nucleotídeos de um sítio - como as baseadas em PWMs (position weight matrix) - o que não é necessariamente verdade. Este projeto teve como objetivo avaliar a utilização de gramáticas regulares estocásticas (GRE) como técnica alternativa às PWMs neste problema, uma vez que GREs são capazes de caracterizar dependências entre posições consecutivas dos sítios. Embora as diferenças de desempenho tenham sido sutis, GREs parecem mesmo ser mais adequadas do que PWMs na presença de valores mais altos de dependência de bases, e PWMs nos demais casos. Por fim, uma ferramenta de predição computacional de SLFTs foi criada baseada tanto em GREs quanto em PWMs. / Transcription factors (FT) are proteins that bind to specific and well-conserved sequences of nucleotides in the DNA, called transcription factor binding sites (TFBS), contained in regions of gene regulation known as cis-regulatory modules (CRM). By recognizing TFBA, the transcription factor binds to that site and positively or negatively influence the gene transcription. There are experimental procedures for the identification of TFBS in a genome such as footprinting, ChIP-chip or ChIP-Seq. However, the implementation of these techniques involves high costs and time. Alternatively, one may utilize the TFBS sequences already known for a particular transcription factor and applying computational supervised learning techniques to create a computational model for that site and then perform the computational prediction in the genome. However, most existing software tools for this purpose considers independence between nucleotide positions in the site - such as those based on PWMs (position weight matrix) - which is not necessarily true. This project aimed to evaluate the use of stochastic regular grammars (SRG) as an alternative technique to PWMs in this problem, since SRGs are able to characterize dependencies between consecutive positions in the sites. Although differences in performance have been subtle, SRGs appear to be more suitable than PWMs in the presence of higher base dependency values, and PWMs in other cases. Finally, a computational TFBS prediction tool was created based on both SRGs and PWMs.

Page generated in 0.0303 seconds