• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 166
  • 25
  • 21
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 234
  • 234
  • 195
  • 193
  • 114
  • 80
  • 64
  • 57
  • 42
  • 39
  • 36
  • 33
  • 30
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Multiaccess of a slotted channel by finitely many users

January 1981 (has links)
Michael G. Hluchyj and Robert G. Gallager. / Bibliography: leaf 7. / Caption title. "August, 1981." / DARPA Contract ONR no. N00014-75-C-1183 Program Code no. 5T10 ONR Identifying no. 049-383
122

Modeling Future All-Optical Networks without Buffering Capabilities

De Vega Rodrigo, Miguel 27 October 2008 (has links)
In this thesis we provide a model for a bufferless optical burst switching (OBS) and an optical packet switching (OPS) network. The thesis is divided in three parts. In the first part we introduce the basic functionality and structure of OBS and OPS networks. We identify the blocking probability as the main performance parameter of interest. In the second part we study the statistical properties of the traffic that will likely run through these networks. We use for this purpose a set of traffic traces obtained from the Universidad Politécnica de Catalunya. Our conclusion is that traffic entering the optical domain in future OBS/OPS networks will be long-range dependent (LRD). In the third part we present the model for bufferless OBS/OPS networks. This model takes into account the results from the second part of the thesis concerning the LRD nature of traffic. It also takes into account specific issues concerning the functionality of a typical bufferless packet-switching network. The resulting model presents scalability problems, so we propose an approximative method to compute the blocking probability from it. We empirically evaluate the accuracy of this method, as well as its scalability.
123

Hybrid switching : converging packet and TDM flows in a single platform

Parajuli, Roshan 25 February 2009
Optical fibers have brought fast and reliable data transmission to todays network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks.<p> In todays network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services.<p> This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switchs bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switchs resources. The switch is a TDM based architecture which allows each switchs port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to collapse two network layers into one platform.<p> The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability.
124

GMPLS-OBS interoperability and routing acalability in internet

Mendoça Pedroso, Pedro Miguel 16 December 2011 (has links)
The popularization of Internet has turned the telecom world upside down over the last two decades. Network operators, vendors and service providers are being challenged to adapt themselves to Internet requirements in a way to properly serve the huge number of demanding users (residential and business). The Internet (data-oriented network) is supported by an IP packet-switched architecture on top of a circuit-switched, optical-based architecture (voice-oriented network), which results in a complex and rather costly infrastructure to the transport of IP traffic (the dominant traffic nowadays). In such a way, a simple and IP-adapted network architecture is desired. From the transport network perspective, both Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) technologies are part of the set of solutions to progress towards an IP-over-WDM architecture, providing intelligence in the control and management of resources (i.e. GMPLS) as well as a good network resource access and usage (i.e. OBS). The GMPLS framework is the key enabler to orchestrate a unified optical network control and thus reduce network operational expenses (OPEX), while increasing operator's revenues. Simultaneously, the OBS technology is one of the well positioned switching technologies to realize the envisioned IP-over-WDM network architecture, leveraging on the statistical multiplexing of data plane resources to enable sub-wavelength in optical networks. Despite of the GMPLS principle of unified control, little effort has been put on extending it to incorporate the OBS technology and many open questions still remain. From the IP network perspective, the Internet is facing scalability issues as enormous quantities of service instances and devices must be managed. Nowadays, it is believed that the current Internet features and mechanisms cannot cope with the size and dynamics of the Future Internet. Compact Routing is one of the main breakthrough paradigms on the design of a routing system scalable with the Future Internet requirements. It intends to address the fundamental limits of current stretch-1 shortest-path routing in terms of RT scalability (aiming at sub-linear growth). Although "static" compact routing works fine, scaling logarithmically on the number of nodes even in scale-free graphs such as Internet, it does not handle dynamic graphs. Moreover, as multimedia content/services proliferate, the multicast is again under the spotlight as bandwidth efficiency and low RT sizes are desired. However, it makes the problem even worse as more routing entries should be maintained. In a nutshell, the main objective of this thesis in to contribute with fully detailed solutions dealing both with i) GMPLS-OBS control interoperability (Part I), fostering unified control over multiple switching domains and reduce redundancy in IP transport. The proposed solution overcomes every interoperability technology-specific issue as well as it offers (absolute) QoS guarantees overcoming OBS performance issues by making use of the GMPLS traffic-engineering (TE) features. Keys extensions to the GMPLS protocol standards are equally approached; and ii) new compact routing scheme for multicast scenarios, in order to overcome the Future Internet inter-domain routing system scalability problem (Part II). In such a way, the first known name-independent (i.e. topology unaware) compact multicast routing algorithm is proposed. On the other hand, the AnyTraffic Labeled concept is also introduced saving on forwarding entries by sharing a single forwarding entry to unicast and multicast traffic type. Exhaustive simulation campaigns are run in both cases in order to assess the reliability and feasible of the proposals.
125

Hybrid switching : converging packet and TDM flows in a single platform

Parajuli, Roshan 25 February 2009 (has links)
Optical fibers have brought fast and reliable data transmission to todays network. The immense fiber build-out over the last few years has generated a wide array of new access technologies, transport and network protocols, and next-generation services in the Local Area Network (LAN), Metropolitan Area Network (MAN), and Wide Area Network (WAN). All these different technologies, protocols, and services were introduced to address particular telecommunication needs. To remain competitive in the market, the service providers must offer most of these services, while maintaining their own profitability. However, offering a large variety of equipment, protocols, and services posses a big challenge for service carriers because it requires a huge investment in different technology platforms, lots of training of staff, and the management of all these networks.<p> In todays network, service providers use SONET (Synchronous Optical NETwork) as a basic TDM (Time Division Multiplexing) transport network. SONET was primarily designed to carry voice traffic from telephone networks. However, with the explosion of traffic in the Internet, the same SONET based TDM network is optimized to support increasing demand for packet based Internet network services (data, voice, video, teleconference etc.) at access networks and LANs. Therefore the service providers need to support their Internet Protocol (IP) infrastructure as well as in the legacy telephony infrastructure. Supporting both TDM and packet services in the present condition needs multilayer operations which is complex, expensive, and difficult to manage. A hybrid switch is a novel architecture that combines packets (IP) and TDM switching in a unified access platform and provides seamless integration of access networks and LANs with MAN/WAN networks. The ability to fully integrate these two capabilities in a single chassis will allow service providers to deploy a more cost effective and flexible architecture that can support a variety of different services.<p> This thesis develops a hybrid switch which is capable of offering bundled services for TDM switching and packet routing. This is done by dividing the switchs bandwidth into VT1.5 (Virtual Tributary -1.5) channels and providing SONET based signaling for routing the data and controlling the switchs resources. The switch is a TDM based architecture which allows each switchs port to be independently configured for any mixture of packet and TDM traffic, including 100% packet and 100% TDM. This switch allows service providers to simplify their edge networks by consolidating the number of separate boxes needed to provide fast and reliable access. This switch also reduces the number of network management systems needed, and decreases the resources needed to install, provision and maintain the network because of its ability to collapse two network layers into one platform.<p> The scope of this thesis includes system architecture, logic implementation, and verification testing, and performance evaluation of the hybrid switch. The architecture consists of ingress/egress ports, an arbiter and a crossbar. Data from ingress ports is carried to the egress ports via VT1.5 channels which are switched at the cross point of the crossbar. The crossbar setup and channel assignments at ingress port are done by the arbiter. The design was tested by simulation and the hardware cost was estimated. The performance results showed that the switch is non-blocking, provide differentiated service, and has an overall effective throughput of 80%. This result is a significant step towards the goal of building a switch that can support multiprotocol and provide different network capabilities into one platform. The long-term goal of this project is to develop a prototype of the hybrid switch with broadband capability.
126

Optical Label Switching Technologies for Optical Packet Switched Networks

Chowdhury, Arshad M. 20 November 2006 (has links)
Optical packet switching (OPS) is the most prominent candidate transport solution that can seamlessly integrate electrical and optical layers by transferring certain switching functionality from electronics to optics, thus alleviating unnecessarily slow and expensive optical-electrical-optical conversions and signal processing at the switching node. Optical Label Switching (OLS) is an important aspect of the optical packet switched network that enables very low-latency forwarding of ultra-high bit-rate, protocol-independent packets entirely in the optical domain. The objective of the proposed research is to develop novel, efficient techniques to realize several key enabling technologies such as optical label generation and encoding, optical label swapping, all-optical buffering, and spectral efficient transmission system for optical label switched based OPS networks. A novel scheme of generating optical label at the ingress node using optical carrier suppression and separation (OCSS) technique is proposed. This scheme does not suffer from any unavoidable interference, limited extinction ratio or strict synchronization requirements between payload and label as observed by the currently available other label generation methods. One of the primary challenges to realize optical label swapping at the core node of scalable OLS network is the insertion of new optical labels without any wavelength conversion for same wavelength packet routing. A novel mechanism to realize same wavelength packet switching without using any conventional wavelength converter in the OLS network carrying differential phase-shift keying (DPSK) modulated payload and on-off keying (OOK) modulated optical label is demonstrated. Also a new dense wavelength division multiplexing (DWDM) optical buffer architecture using optical fiber delay lines that can provide wavelength selective reconfigurable variable delays is proposed. Optical packet switching provides automated, reconfigurable, and faster provision of both wavelength and bandwidth with finer granularity in the optical layer. However, a newer, cost-effective, and spectrally efficient optical transmission technology is essential to support the explosive bandwidth demand expected by the future optical packet switched networks. To meet this challenge, a spectrally efficient solution for transporting 40 Gbps per channel data over 50 GHz spaced DWDM system is developed by exploiting optical carrier suppression and separation technique and optical duobinary modulation.
127

Performance analysis and algorithm design for data-driven IP/ATM label switching systems

Zheng, Jun, January 2000 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references.
128

A multi-stage optical switch with output buffer using WDM for delay lines sharing /

Cheng, Kin On. January 2003 (has links)
Thesis (M. Phil.)--Hong Kong University of Science and Technology, 2003. / Includes bibliographical references (leaves 77-79). Also available in electronic version. Access restricted to campus users.
129

Modeling, analysis and design of the input controller for ATM switches /

Wu, Dongmei, January 2001 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2002. / Bibliography: leaves 111-113.
130

A distributed routing algorithm for ER-LSP setup in MLPS networks

Garige, Naga Siddhardha. January 2003 (has links)
Thesis (M.S.)--University of South Florida, 2003. / Title from PDF of title page. Document formatted into pages; contains 62 pages. Includes bibliographical references.

Page generated in 0.0648 seconds