Spelling suggestions: "subject:"padlock"" "subject:"hadlock""
21 |
Nucleic Acid Based Pathogen DiagnosticsAkhras, Michael S. January 2008 (has links)
Pathogenic organisms are transmitted to the host organism through all possible connected pathways, and cause a myriad of diseases states. Commonly occurring curable infectious diseases still impose the greatest health impacts on a worldwide perspective. The Bill & Melinda Gates Foundation partnered with RAND Corporation to form the Global Health Diagnostics Forum, with the goal of establishing and interpreting mathematical models for what effects a newly introduced point-of-care pathogen diagnostic would have in developing countries. The results were astonishing, with potentially millions of lives to be saved on an annual basis. Golden standard for diagnostics of pathogenic bacteria has long been cultureable medias. Environmental biologists have estimated that less than 1% of all bacteria are cultureable. Genomic-based approaches offer the potential to identify all microbes from all the biological kingdoms. Nucleic acid based pathogen diagnostics has evolved significantly over the past decades. Novel technologies offer increased potential in sensitivity, specificity, decreased costs and parallel sample management. However, most methods are confined to core laboratory facilities. To construct an ultimate nucleic acid based diagnostic for use in areas of need, potential frontline techniques need to be identified and combined. The research focus of this doctoral thesis work has been to develop and apply nucleic acid based methods for pathogen diagnostics. Methods and assays were applied to the two distinct systems i) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae, and ii) genotype determination of the cancer causative Human Papillomavirus (HPV). The first part of the study included development of rapid, direct and multiplex Pyrosequencing nucleic acid screenings. With improved methodology in the sample preparation process, we could detect an existence of multiple co-infecting HPV genotypes at greater sensitivities than previously described, when using the same type of methodology. The second part of the study focused on multiplex nucleic acid amplification strategies using Molecular Inversion Probes with end-step Pyrosequencing screening. The PathogenMip assay presents a complete detection schematic for virtually any known pathogenic organism. We also introduce the novel Connector Inversion Probe, a padlock probe capable of complete gap-fill reactions for multiplex nucleic acid amplifications. / Patogena organismer smittas till värd organismen genom alla möjliga kontaktnätverk och skapar en mångfald olika sjukdomstillstånd. Dock är det fortfarande vanligt förekommande behandlingsbara infektiösa sjukdomar som orsakar den största hälsoförlusten, sett från ett globalt perspektiv. Bill och Melinda Gates Stiftelsen samarbetade med RAND kooperation för att forma “The Global Health Diagnostics Forum”. Deras mål var att etablera och analysera matematiska modeller för vilka effekter en ny diagnostisk metod utrustat för fältarbete skulle ha i utvecklingsländer. Resultaten var häpnadsveckande, med potentiellt miljoner av liv som skulle kunna räddas på en årlig basis. Den etablerade standarden för diagnostik av patogena bakterier har länge varit kultiveringsmedia baserad. Miljö specialiserade biologer har estimerat att mindre än 1 % av alla bakterie arter går att kultivera. Dock erbjuder genetiska analyser potentialen att kunna identifiera alla mikrober från alla de biologiska rikena. Nukleinsyrebaserade diagnostiska metoder har märkbart förbättrats över de senaste årtionden. Nya tekniker erbjuder utökad sensitivitet, selektivitet, sänkta kostnader och parallella analyser av patient prover. Dock är de flesta metoderna begränsade till standardiserade laboratoriemiljöer. För att konstruera en väl fungerande diagnostisk fältutrustning för användning i problem områden, behöver världsledande tekniker identifieras och kombineras. Fokuseringsområdet för denna doktorsavhandling har varit att utveckla och utföra nukleinsyrebaserade metoder för patogen diagnostik. Metoder och experimentella utförande applicerades på två distinkta system i) sökning av antibiotika resistens relaterade mutationer i den patogena bakterien Neisseria gonorrhoeae och ii) genotypning av det cancer orsakande Humana Papillomaviruset (HPV). Den första delen av studien inriktade sig mot utveckling av snabba, direkta och multiplexa Pyrosekvenserings baserade nukleinsyreanalyser. Med förbättrad provprepareringsmetodologi kunde vi detektera multipla HPV infektioner med högre sensitivitet än vad tidigare beskrivits med liknande metodologi. Den andra delen av studien fokuserades på multiplexa nukleinsyre amplifikationer med “Molecular Inversion Probe” tekniken med sista steg Pyrosekvenserings analys. “PathogenMip assay” erbjuder ett komplett detektionsprotokoll för alla kända patogena organismer. Vi introducerar även den nya “Connector Inversion Probe”, en “Padlock Probe” kapabel att genomföra kompletta gap fyllningar för multiplex nukleinsyre amplifiering. / QC 20100624
|
22 |
Application of Padlock Probe Based Nucleic Acid Analysis In SituHenriksson, Sara January 2010 (has links)
The great variation displayed by nucleic acid molecules in human cells, and the continuous discovery of their impact on life, consequently require continuous refinements of molecular analysis techniques. Padlock probes and rolling circle amplification offer single nucleotide discrimination in situ, a high signal-to-noise ratio and localized detection within cells and tissues. In this thesis, in situ detection of nucleic acids with padlock probes and rolling circle amplification was applied for detection of DNA in the single cell gel electrophoresis assay to detect nuclear and mitochondrial DNA. This assay is used to measure DNA damage and repair. The behaviour of mitochondrial DNA in the single cell gel electrophoresis assay has earlier been controversial, but it was shown herein that mitochondrial DNA diffuses away early in the assay. In contrast, Alu repeats remain associated with the nuclear matrix throughout the procedure. A new twelve gel approach was also developed with increased throughput of the single cell gel electrophoresis assay. DNA repair of three genes OGG1, XPD and HPRT and of Alu repeats after H2O2 induced damage was further monitored. All three genes and Alu repeats were repaired faster than total DNA. Finally, padlock probes and rolling circle amplification were applied for detection of the single stranded RNA virus Crimean Congo hemorrhagic fever virus. The virus was detected by first reverse transcribing RNA into cDNA.. The virus RNA together with its complementary RNA and the nucleocapsid protein were detected in cultured cells. The work presented here enables studies of gene specific damage and repair as well as viral infections in situ. Detection by ligation offers high specificity and makes it possible to discriminate even between closely related molecules. Therefore, these techniques will be useful for a wide range of applications within research and diagnostics.
|
23 |
Genotyping and Mutation Detection In Situ : Development and application of single-molecule techniquesGrundberg, Ida January 2011 (has links)
The human body is composed of trillions of cells closely working together to maintain a functional organism. Every cell is unique in molecular composition and can acquire genetic variations that might cause it to turn pathological. It is essential to develop improved tools to better understand the development of normal and disease tissue, ideally enabling single-cell expression studies in preserved context of complex tissue with single-nucleotide resolution. This thesis presents the development and application of a new in situ method for localized detection and genotyping of individual transcripts directly in cells and tissues. The described technique utilizes padlock probes and target-primed rolling circle amplification and is highly suitable for sensitive in situ analysis. First, a new strategy for directed cleavage of single stranded DNA was investigated, e.g. nucleic acid targets with extended 3´ ends, for successful initiation of rolling circle amplification. The presented cleavage strategy is simple and applicable for subsequent enzymatic reactions, e.g. ligation and polymerization. Specific cleavage of long target overhangs was demonstrated in synthetic oligonucleotides and in genomic DNA and the detection efficiency was substantially increased. For multiplex detection and genotyping of individual transcripts in single cells, a new in situ method was developed. The technique showed a satisfactorily detection efficiency and was later applied as a general mutation analysis tool for detection of KRAS point mutations in complex tumor tissue sections, e.g. formalin-fixed, paraffin-embedded tumor tissues and cytologic tumor imprints. Mutation status was assessed in patient samples by in situ padlock probe detection and results were confirmed by DNA-sequencing. Finally, the method was adapted for simultaneous detection of individual mRNA molecules and endogenous protein modifications in single cells using padlock probes and in situ PLA. This assay will be useful for gene expression analysis and exploration of new drugs with vague effector sites. To our knowledge, no other technique exists today that offers in situ transcript detection with single-nucleotide resolution in heterogeneous tissues. The method will especially be suitable for discrimination of highly similar transcripts, e.g. splice variants, SNPs and point mutations, within gene expression studies and for cancer diagnostics.
|
24 |
Visualizing Interacting Biomolecules In SituWeibrecht, Irene January 2011 (has links)
Intra- and intercellular information is communicated by posttranslational modifications (PTMs) and protein-protein interactions, transducing information over cell membranes and to the nucleus. A cells capability to respond to stimuli by several highly complex and dynamic signaling networks provides the basis for rapid responses and is fundamental for the cellular collaborations required in a multicellular organism. Having received diverse stimuli, being positioned at various stages of the cell cycle or, for the case of cancer, containing altered genetic background, each cell in a population is slightly different from its neighbor. However, bulk analyses of interactions will only reveal an average, but not the true variation within a population. Thus studies of interacting endogenous biomolecules in situ are essential to acquire a comprehensive view of cellular functions and communication. In situ proximity ligation assay (in situ PLA) was developed to investigate individual endogenous protein-protein interactions in fixed cells and tissues and was later applied for detection for PTMs. Progression of signals in a pathway can branch out in different directions and induce expression of different target genes. Hence simultaneous measurement of protein activity and gene expression provides a tool to determine the balance and progression of these signaling events. To obtain this in situ PLA was combined with padlock probes, providing an assay that can interrogate both PTMs and mRNA expression at a single cell level. Thereby different nodes of the signaling pathway as well as drug effects on different types of molecules could be investigated simultaneously. In addition to regulation of gene expression, protein-DNA interactions present a mechanism to manage accessibility of the genomic DNA in an inheritable manner, providing the basis for lineage commitment, via e.g. histone PTMs. To enable analyses of protein-DNA interactions in situ we developed a method that utilizes the proximity dependence of PLA and the sequence selectivity of padlock probes. This thesis presents new methods providing researchers with a set of tools to address cellular functions and communication in complex microenvironments, to improve disease diagnostics and to contribute to hopefully finding cures.
|
25 |
Detection and Sequencing of Amplified Single MoleculesKe, Rongqin January 2012 (has links)
Improved analytical methods provide new opportunities for both biological research and medical applications. This thesis describes several novel molecular techniques for nucleic acid and protein analysis based on detection or sequencing of amplified single molecules (ASMs). ASMs were generated from padlock probe assay and proximity ligation assay (PLA) through a series of molecular processes. In Paper I, a simple colorimetric readout strategy for detection of ASMs generated from padlock probe assay was used for highly sensitive detection of RNA virus, showing the potential of using padlock probes in the point-of-care diagnostics. In Paper II, digital quantification of ASMs, which were generated from padlock probe assay and PLA through circle-to-circle amplification (C2CA), was used for rapid and sensitive detection of nucleic acids and proteins, aiming for applications in biodefense. In Paper III, digital quantification of ASMs that were generated from PLA without C2CA was shown to be able to improve the precision and sensitivity of PLA when compared to the conventional real-time PCR readout. In Paper IV, a non-optical approach for detection of ASMs generated from PLA was used for sensitive detection of bacterial spores. ASMs were detected through sensing oligonucleotide-functionalized magnetic nanobeads that were trapped within them. Finally, based on in situ sequencing of ASMs generated via padlock probe assay, a novel method that enabled sequencing of individual mRNA molecules in their natural context was established and presented in Paper V. Highly multiplex detection of mRNA molecules was also achieved based on in situ sequencing. In situ sequencing allows studies of mRNA molecules from different aspects that cannot be accessed by current in situ hybridization techniques, providing possibilities for discovery of new information from the complexity of transcriptome. Therefore, it has a great potential to become a useful tool for gene expression research and disease diagnostics.
|
26 |
iLocks: a novel tool for RNA assays with improved specificityKrzywkowski, Tomasz January 2017 (has links)
The Central Dogma of molecular biology describes a framework for how genetic information is transferred in cells, placing RNA as a messenger between DNA and translated proteins. During the last years, interest in RNA research has grown tremendously due to the increasing understanding and recognition of the importance of RNA in regulation of gene expression, biochemical catalysis, and genome integrity surveillance. Most importantly, RNA content, unlike DNA, changes constantly, fine-tuning the cellular response to match the environmental conditions. There is a clear potential for RNA biomarkers, reflecting both the natural and pathological conditions in vivo. Various methods have been developed to study RNA, of which the most common tools and techniques are described in this thesis. Since many of these gold standard methods are based on detecting RNA derivative (cDNA), there is a wide scope for efficient alternative tools directly targeting RNA. In Paper I, the spatiotemporal expression of human adenovirus-5 mRNA in epithelial and blood cells infected with the virus has been studied. For this, padlock probes and rolling circle amplification (RCA) were used to visualize, quantify and analyse both viral and host cell cDNAs in different infection scenarios, at single cell level. In Paper II, direct RNA detection fidelity has been evaluated using padlock probes. A novel type of probe (iLock) that is activated on RNA via invasive cleavage mechanism, prior to RCA was developed in this approach. Using iLocks, a substantial improvement of direct RNA sensing fidelity has been observed. In Paper III, RNA modifications were introduced in otherwise DNA iLock probes to enhance the probes’ efficiency on miRNAs. Using chimeric iLock probes, multiplexed differentiation of conserved miRNA family members were performed with next- generation sequencing-by-ligation readout. Efficient replication of chimeric probes used in Paper III implies that the Phi29 DNA polymerase readily accepts RNA-containing circles as amplification substrates. In Paper IV, real-time RCA monitoring for measurement of amplification rates and analysis of amplification patterns of various RNA-containing circles was achieved. Moreover, the RCA products were sequenced as a proof for the reverse-transcriptase activity of the Phi29 DNA polymerase. This thesis effectively contributes to a better understanding of mechanisms influencing RNA detection with, but not limited to, padlock probes. It expands the available RNA analyses toolkit with novel strategies and solutions, which can be potentially adapted for RNA-focused research, in general and molecular diagnostics, in particular. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
|
27 |
Ett sannolikhetsbaserat kvalitetsmått förbättrar klassificeringen av oförväntade sekvenser i in situ sekvensering / A probability-based quality measure improves the classification of unexpected sequences in in situ sequencingNordesjö, Olle, Pontén, Victor, Herman, Stephanie, Ås, Joel, Jamal, Sabri, Nyberg, Alona January 2014 (has links)
In situ sekvensering är en metod som kan användas för att lokalisera differentiellt uttryck av mRNA direkt i vävnadssnitt, vilket kan ge viktiga ledtrådar om många sjukdomstillstånd. Idag förloras många av sekvenserna från in situ sekvensering på grund av det kvalitetsmått man använder för att säkerställa att sekvenser är korrekta. Det finns troligtvis möjlighet att förbättra prestandan av den nuvarande base calling-metoden eftersom att metoden är i ett tidigt utvecklingsskede. Vi har genomfört explorativ dataanalys för att undersöka förekomst av systematiska fel och korrigerat för dessa med hjälp av statistiska metoder. Vi har framförallt undersökt tre metoder för att korrigera för systematiska fel: I) Korrektion av överblödning som sker på grund avöverlappande emissionsspektra mellan fluorescenta prober. II) En sannolikhetsbaserad tolkningav intensitetsdata som resulterar i ett nytt kvalitetsmått och en alternativ klassificerare baseradpå övervakad inlärning. III) En utredning om förekomst av cykelberoende effekter, exempelvisofullständig dehybridisering av fluorescenta prober. Vi föreslår att man gör följande saker: Implementerar och utvärderar det sannolikhetsbaserade kvalitetsmåttet Utvecklar och implementerar den föreslagna klassificeraren Genomför ytterligare experiment för att påvisa eller bestrida förekomst av ofullständigdehybridisering / In situ sequencing is a method that can be used to localize differential expression of mRNA directly in tissue sections, something that can give valuable insights to many statest of disease. Today, many of the registered sequences from in situ sequencing are lost due to a conservative quality measure used to filter out incorrect sequencing reads. There is room for improvement in the performance of the current method for base calling since the technology is in an early stage of development. We have performed exploratory data analysis to investigate occurrence of systematic errors, and corrected for these by using various statistical methods. The primary methods that have been investigated are the following: I) Correction of emission spectra overlap resulting in spillover between channels. II) A probability-based interpretation of intensity data, resulting in a novel quality measure and an alternative classifier based on supervised learning. III) Analysis of occurrence of cycle dependent effects, e.g. incomplete dehybridization of fluorescent probes. We suggest the following: Implementation and evaluation of the probability-based quality measure Development and implementation of the proposed classifier Additional experiments to investigate the possible occurrence of incomplete dehybridization
|
28 |
Nucleic acid analysis tools : Novel technologies and biomedical applicationsHernández-Neuta, Iván January 2017 (has links)
Nucleic acids are fundamental molecules of living organisms functioning essentially as the molecular information carriers of life. From how an organism is built to how it responds to external conditions, all of it, can be found in the form of nucleic acid sequences inside every single cell of every life form on earth. Therefore, accessing these sequences provides key information regarding the molecular identity and functional state of any living organism, this is very useful for areas like biomedicine, where accessing and understanding these molecular signatures is the key to develop strategies to understand, treat and diagnose diseases. Decades of research and technological advancements have led to the development of a number of molecular tools and engineering technologies that allow accessing the information contained in the nucleic acids. This thesis provides a general overview of the tools and technologies available for nucleic acid analysis, and proposes an illustrative concept on how molecular tools and emergent technologies can be combined in a modular fashion to design methods for addressing different biomedical questions. The studies included in this thesis, are focused on the particular use of the molecular tools named: padlock and selector probes, rolling circle amplification, and fluorescence detection of single molecules in combination with microfluidics and portable microscopy. By using this combination, it became possible to design and demonstrate novel approaches for integrated nucleic acid analysis, inexpensive digital quantification, mobile-phone based diagnostics and the description of viral infections. These studies represent a step forward towards the adoption of the selected group of tools and technologies, for the design and building of methods that can be used as powerful alternatives to conventional tools used in molecular diagnostics and virology. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 1: Manuscript.</p>
|
29 |
The Human Y chromosome and its role in the developing male nervous systemJohansson, Martin M. January 2015 (has links)
Recent research demonstrated that besides a role in sex determination and male fertility, the Y chromosome is involved in additional functions including prostate cancer, sex-specific effects on the brain and behaviour, graft-versus-host disease, nociception, aggression and autoimmune diseases. The results presented in this thesis include an analysis of sex-biased genes encoded on the X and Y chromosomes of rodents. Expression data from six different somatic tissues was analyzed and we found that the X chromosome is enriched in female biased genes and depleted of male biased ones. The second study described copy number variation (CNV) patterns in a world-wide collection of human Y chromosome samples. Contrary to expectations, duplications and not deletions were the most frequent variations. We also discovered novel CNV patterns of which some were significantly overrepresented in specific haplogroups. A substantial part of the thesis focuses on analysis of spatial expression of two Y-encoded brain-specific genes, namely PCDH11Y and NLGN4Y. The perhaps most surprising discovery was the observation that X and Y transcripts of both gene pairs are mostly expressed in different cells in human spinal cord and medulla oblongata. Also, we detected spatial expression differences for the PCDH11X gene in spinal cord. The main focus of the spatial investigations was to uncover genetically coded sexual differences in expression during early development of human central nervous system (CNS). Also, investigations of the expression profiles for 13 X and Y homolog gene pairs in human CNS, adult brain, testes and still-born chimpanzee brain samples were included. Contrary to previous studies, we found only three X-encoded genes from the 13 X/Y homologous gene pairs studied that exhibit female-bias. We also describe six novel non-coding RNAs encoded in the human MSY, some of which are polyadenylated and with conserved expression in chimpanzee brain. The description of dimorphic cellular expression patterns of X- and Y-linked genes should boost the interest in the human specific gene PCDH11Y, and draw attention to other Y-encoded genes expressed in the brain during development. This may help to elucidate the role of the Y chromosome in sex differences during early CNS development in humans. / <p>chinese, finnish, norwegian, schizophrenia, bipolar, bipolar disorder, msy, male specific region Y, PAR1, PAR2, pseudoautosomal, male-biased, female-biased, male biased, female biased, ashkenazi population, structure, variants, YHRD, Elena Jazin, Björn Reinius, Per Ahlberg, brain, hjärna, CNS, central nervous system, IR2, inverted repeat 2, isodicentric, genetics, genetik, padlock, rolling circle, amplification, PCR, sY1191, sY1291, STS, DDX3Y, DAZ, AZFa, AZFb, AZFc, AZF, Repping, haplogroup J, rearrangements, DE-M145, I-M170, E-M96, Q-M242, R-M207, O-M175, G-M201, D-M174, C-M130, NO-M214, N-M231, poland</p>
|
Page generated in 0.0202 seconds