• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude chez la levure Saccharomyces cerevisiae des relations entre la structure du petit ARN nucléolaire U3, ses interactions avec les protéines de la particule nucléolaire snoRNP U3 et sa fonction dans la biogenèse des ribosomes / Study to the yeast Saccharomyces cerevisiae of the relations between the U3 snoRNA structure, its interactions with proteins of the snoRNP U3 and its function in the of ribosome biogenesis

Rolland, Nicolas 14 December 2012 (has links)
Le snoRNA U3 contient deux motifs conservés C'/D et de B/C qui permettent de recruter les protéines constitutives de la snoRNP U3. La liaison de la protéine Snu13p/15.5 kD à chacun de ces motifs est un préalable pour le recrutement des 4 autres protéines, à savoir : Nop1p, Nop56p et Nop58p sur le motif C'/D et de Rrp9p, une protéine spécifique du snoRNA U3, sur le motif B/C. Nous avons utilisé la structure 3D connue d'une protéine humaine contenant 7 motifs WD-40 et des méthodes de modélisation moléculaire pour proposer un modèle de structure 3D de Rrp9p. En parallèle, nous avons identifié les déterminants nécessaires à l'association des protéines Snu13p, Nop1p, Nop56p et Nop58p sur le motif C'/D du snoRNA U3, ceci en produisant différents variants du snoRNA U3 et en testant leurs capacités fonctionnelles et leurs stabilités dans la levure. Sur la base d'un modèle 3D d'une snoRNP C/D construit par C. Charron, nous avons ensuite formulé des hypothèses sur les interactions possibles entre le motif C'/D et les acides aminés des protéines Snu13p et Nop58p et confirmé ces hypothèses par mutagénèse dirigée. Les données ont en plus révélé qu'une faible quantité de snoRNA U3 est suffisante pour assurer la croissance des levures. Toujours par mutagénèse dirigée et étude des conséquences in cellulo, j'ai pu montrer quelles sont les contraintes en distance entre les motifs C'/D et B/C. Ce qui nous permet de formuler des hypothèses sur leurs positionnements relatifs dans la snoRNP. Au total mon travail a permis d'apporter des informations importantes sur l'architecture et les contraintes fonctionnelles de la snoRNP U3 de levure / U3 snoRNA contains two conserved pairs of boxes C'/D and B/C needed to bind the stably associated proteins. Binding of protein Snu13p/15.5 kD to each of the conserved motifs is a prerequisite for recruitment of the 4 other U3 snoRNP proteins, namely: Nop1p, Nop56p and Nop58p on the C'/D motif and the Rrp9p U3 specific protein on the B/C motif. We used the known 3D structure of a human G protein containing 7 WD-40 motifs and 3D structure homology modeling methods to build a 3D structure model for Rrp9p. In parallel, by production of variant U3 snoRNAs, and by testing their in vivo stabilities and activities, we identified the C'/D determinants needed for association of proteins Snu13p, Nop1p, Nop56p and Nop58p to U3 snoRNA. Based on a 3D structure model of U3 C/D box RNP built by C Charron, we then formulated hypotheses on the possible interactions between the C'/D motif and amino acids from Snu13p and Nop58p and verified the hypotheses by site-directed mutagenesis of yeast cell components. The data also revealed that very low amounts of U3 snoRNA are sufficient to ensure yeast growth. By site directed mutagenesis, I also studied how the C'/D and B/C motifs should be positioned one relative to the other in order to be functional. Taken together, my work brings important information on the architecture of yeast U3 snoRNP and its functional constraints
2

Caracterização funcional das proteínas Nop17p e Rsa1p de Saccharomyces cerevisiae / Functional characterization of the Saccharomyces cerevisiae proteins Nop17p and Rsa1p

Prieto, Marcela Bach 19 September 2014 (has links)
Nop17p e Rsa1p são proteínas nucleolares em Saccharomyces cerevisiae, as quais foram identificadas pela sua associação a dois complexos celulares: os snoRNPs de box C/D, através de interação com as subunidades Nop58p e Snu13p, respectivamente, e o R2TP/Hsp90p. Nop17p parece ser responsável por direcionar a chaperona Hsp90p durante a montagem dos snoRNPs, e a associação de Rsa1p a estes complexos ainda não tem uma função estabelecida. Neste trabalho, nós mostramos que a ausência de ambas as proteínas afetam a estabilidade da proteína Nop58p dos snoRNPs e afetam a localização do snoRNA U3. Em relação à ordem de interação das proteínas do core de snoRNps de box C/D, Nop17p associa-se de maneira transiente a Nop1p/Snu13p, seguida da ligação de Nop58p ao complexo. Quanto à rede de interação do R2TP, obtivemos o mutante Nop17(N307S), que não mais interage com Tah1p. Este mutante interage com a subunidade Rvb1p do R2TP, mas não se associa com outras proteínas parceiras de Nop17p(WT). Apesar da importância da interação Nop17p-Tah1p, sua interrupção não afeta o crescimento celular, o que sugere a possibilidade de outro fator estar envolvido na associação entre Nop17p e Hsp90p. / Nop17p and Rsa1p are Saccharomyces cerevisiae nucleolar proteins, which were identified for its association with two cellular complexes: box C/D snoRNPs, through interaction with the core subunits Nop58p and Snu13p respectively, and the R2TP/Hsp90p. Nop17p seems to be responsible for directing Hsp90p to the assembly of snoRNPs. The Rsa1p association to these complexes still have no defined function. In this work, we showed that both proteins absence affect Nop58p stability and causes a mislocalization of the U3 snoRNA. Relativel to the order of assembly of the box C/D snoRNPs core proteins, Nop17p associates transiently with Nop1p/Snu13p, followed by the Nop58p joining to the complex. To study in more detail the protein interactions within the R2TP complex, we obtained the Nop17(N307S) mutant, which no longer interacts withTah1p, but still interacts withRvb1p, another R2TP subunit. Nop17(N307S) does not interact with other Nop17p(WT) partners. Despite the importance of the Nop17p-Tah1p association, the disruption of this interaction does not affect cell growth, suggesting the involvement of a second factor on the Nop17p and Hsp90p association.
3

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Marques da Cruz, Ana Maria Martins 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
4

Caractérisation des propriétés d’un mutant de la protéine Rrp9p de la snoRNP U3 de levure Saccharomyces cerevisiae et mise en évidence d’un réseau de protéines au sein du complexe de maturation précoce des ARNr / Characterization of properties of a mutant of the protein Rrp9p of the yeast Saccharomyces snoRNP U3 cerevisiae and detection of a network of proteins in the early maturation of complex rRNA

Clerget, Guillaume 18 December 2015 (has links)
La biogenèse des ribosomes est un processus complexe et dynamique requérant l’intervention d’une multitude de facteurs d’assemblage et de maturation pour permettre la maturation du pré-ARNr et l’assemblage des protéines ribosomiques. Chez les eucaryotes, la biogenèse de la petite sous-unité ribosomique 40S, débute dans le nucléole par la transcription d’un long précurseur contenant 3 des 4 futurs ARNr matures. Le pré-ARNr 18S est modifié par un ensemble de snoRNP à boîtes C/D et H/ACA et libéré par une série de clivages précoces au niveau des sites A0, A1 et A2. Ces clivages se déroulent au sein d’un macro-complexe, le SSU-processome. Celui-ci s’assemble de manière séquentielle à l’extrémité 5’ du pré-ARNr et est composé d’une multitude de facteurs intervenant dans la maturation, notamment de la snoRNP U3, une snoRNP à boîtes C/D qui joue un rôle de chaperon du pré-ARNr. En effet, le snoARN U3 est impliqué dans la formation de 5 appariements avec le pré-ARNr permettant de positionner correctement les sites de clivages A0, A1 et A2. En plus des 4 protéines cœur retrouvées au sein des snoRNP à boîtes C/D, la snoRNP U3 possède une protéine supplémentaire essentielle à la viabilité cellulaire, Rrp9p. En C-terminal, Rrp9 présente un enchainement de 7 domaines WD40 s’organisant en une structure « beta propeller ». Pour définir le rôle essentiel de cette protéine, nous avons généré des mutants et testé leur fonction. Nous avons ainsi pu montrer que le résidu R289 de Rrp9p est important pour les étapes de clivages précoces du pré-ARNr aux sites A1 et A2. De plus, nous avons identifié de nouveaux partenaires de la protéine Rrp9p au sein du processome et montré que le résidu R289 est impliqué dans une interaction directe avec le facteur Rrp36p. Lorsque ce résidu est muté, certains des défauts de croissance cellulaire liés à la stabilisation des appariements établis entre le pré-ARNr et le snoARN U3 par mutation du snoARN U3 sont fortement renforcés, montrant un lien fonctionnel entre Rrp9p et ces appariements. Nous avons mis en évidence un réseau d’interaction au sein du processome impliquant les protéines Rrp9p, Rrp36p, Sgd1p et Rrp5p : Rrp9p interagit avec Rrp36p et Sgd1p, et ces deux dernières interagissent ensemble, ainsi qu’avec Rrp5p. Les domaines responsables de ces interactions ont été étudiés / Ribosome biogenesis is a complex and dynamic process requiring several assembly and maturation factors needed for processing of the pre-rRNA and assembly of the ribosomal protein. In eukarya, biogenesis of the 40S small subunit starts in the nucleolus with the transcription of a long pre-rRNA, containing 3 out of the 4 future rRNAs. The 18S pre-rRNA is modified by several C/D or H/ACA box snoRNPs and processed by endonucleolytic cleavages at sites A0, A1 and A2 sites. These early cleavages occur within a huge complex termed the SSU-processome. The processome assembles at the 5’ extremity of the pre-rRNA, and contains multiple factors, including the U3 snoRNP, a C/D box snoRNP chaperoning the pre-rRNA. Indeed, the U3 snoRNA is involved in formation of 5 intermolecular helix with the pre-rRNA, which defines the A0, A1 and A2 cleavage sites. In addition to the four C/D box snoRNP core proteins, the U3 snoRNP contains additional protein, Rrp9p, required for cell viability. The Rrp9p C-terminal extremity folds into a beta propeller structure. To try to decipher the Rrp9p role, we mutated several surface residues of the beta propeller protein and the effects of the mutations on cell growth were tested. Through this approach, we found that the R289 residue is important for the maturation events at A1 and A2 sites. Moreover, we identified new protein partners of Rrp9p within the processome and showed that R289 residue is involved in a direct interaction with Rrp36p. We identified a network of protein-protein interactions including Rrp9p, Rrp36p, Sgd1p and Rrp5p : Rrp9p interacts with Rrp36p and Sgd1p, Rrp36p and Sgd1p interact together and with Rrp5p. Some of the protein domains involved in the interactions were identified. In addition, the R289A mutation in Rrp9p has a strong negative effect on growth with mutations in U3 snoRNA that destabilize the U3 snoRNA/pre-rRNA interaction
5

Estudo das interações de Utp25 com outros componentes do complexo SSU processomo / Study of the interactions between Utp25 and other proteins of the SSU processome complex

Ana Maria Martins Marques da Cruz 15 July 2016 (has links)
A síntese de ribossomos é um dos principais processos celulares e na levedura Saccharomyces cerevisiae são necessários 75 snoRNAs e mais de 200 proteínas não-ribossomais para que o ribossomo seja corretamente formado. Para o processamento do precursor dos RNAs ribossomais, chamado pré-rRNA 35S, ocorre o pareamento deste com o U3 snoRNA e outros snoRNAs e diversas proteínas se associam de maneira orquestrada e transitória, formando o complexo SSU processomo. Tal complexo é necessário para o processamento da região 5\' do pré-rRNA 35S e para a correta montagem e maturação da subunidade menor ribossomal. Estudos anteriores do nosso laboratório identificaram a proteína nucleolar Utp25, essencial em S. cerevisiae, como integrante do complexo SSU processomo. Foi demonstrado que a depleção de Utp25 afeta a formação da subunidade menor ribossomal e que Utp25 interage com as proteínas Sas10 e Mpp10, componentes do SSU processomo, além de Utp25 co-imunoprecipitar o snoRNA U3. A partir desses dados, este trabalho teve como objetivo identificar interações da proteína Utp25 com outros componentes do complexo SSU processomo e investigar o papel de tais interações na formação e funcionamento do mesmo. Para purificação do complexo SSU processomo nós utilizamos o método Tandem Affinity Purification-tag (TAP-tag) utilizando TAP-Utp25 como isca. Após análise do purificado resultante por espectrometria de massas, obtivemos como resultado as proteínas Rrp5, Snu13 e Nop56, sendo as duas últimas pertencentes ao subcomplexo U3 snoRNP. / The ribosome synthesis is one of the main cellular processes and in the yeast Saccharomyces cerevisiae 75 snoRNAs and more than 200 non-ribosomal proteins are involved in ribosome maturation. During processing, the pre-rRNA 35S base pairs with the U3 snoRNA and other snoRNAs and several proteins associate, forming the SSU processome complex. This complex is required for the processing of the pre-rRNA 35S 5\' region and for the correct assembly and maturation of the ribosome small subunit. Previous studies from our laboratory identified the nucleolar protein Utp25, essential in S. cerevisiae, as a member of the SSU processome complex. Utp25 depletion affects small ribosomal subunit formation. Utp25 interacts with proteins Sas10 and Mpp10, components of the SSU processome, and Utp25 co-immunoprecipitates U3 snoRNA. From these data, this study aimed to identify Utp25 interactions with other components of the SSU processome complex and to investigate the role of these interactions in this complex formation and function. For the SSU processome complex purification we used the Tandem Affinity Purification-tag method (TAP-tag) and TAP-Utp25 as the bait. After the resulting purified analysis by mass spectrometry, we obtained as results the Rrp5, Snu13 and Nop56 proteins, the last two being U3 snoRNP subcomplex components.
6

Caracterização funcional das proteínas Nop17p e Rsa1p de Saccharomyces cerevisiae / Functional characterization of the Saccharomyces cerevisiae proteins Nop17p and Rsa1p

Marcela Bach Prieto 19 September 2014 (has links)
Nop17p e Rsa1p são proteínas nucleolares em Saccharomyces cerevisiae, as quais foram identificadas pela sua associação a dois complexos celulares: os snoRNPs de box C/D, através de interação com as subunidades Nop58p e Snu13p, respectivamente, e o R2TP/Hsp90p. Nop17p parece ser responsável por direcionar a chaperona Hsp90p durante a montagem dos snoRNPs, e a associação de Rsa1p a estes complexos ainda não tem uma função estabelecida. Neste trabalho, nós mostramos que a ausência de ambas as proteínas afetam a estabilidade da proteína Nop58p dos snoRNPs e afetam a localização do snoRNA U3. Em relação à ordem de interação das proteínas do core de snoRNps de box C/D, Nop17p associa-se de maneira transiente a Nop1p/Snu13p, seguida da ligação de Nop58p ao complexo. Quanto à rede de interação do R2TP, obtivemos o mutante Nop17(N307S), que não mais interage com Tah1p. Este mutante interage com a subunidade Rvb1p do R2TP, mas não se associa com outras proteínas parceiras de Nop17p(WT). Apesar da importância da interação Nop17p-Tah1p, sua interrupção não afeta o crescimento celular, o que sugere a possibilidade de outro fator estar envolvido na associação entre Nop17p e Hsp90p. / Nop17p and Rsa1p are Saccharomyces cerevisiae nucleolar proteins, which were identified for its association with two cellular complexes: box C/D snoRNPs, through interaction with the core subunits Nop58p and Snu13p respectively, and the R2TP/Hsp90p. Nop17p seems to be responsible for directing Hsp90p to the assembly of snoRNPs. The Rsa1p association to these complexes still have no defined function. In this work, we showed that both proteins absence affect Nop58p stability and causes a mislocalization of the U3 snoRNA. Relativel to the order of assembly of the box C/D snoRNPs core proteins, Nop17p associates transiently with Nop1p/Snu13p, followed by the Nop58p joining to the complex. To study in more detail the protein interactions within the R2TP complex, we obtained the Nop17(N307S) mutant, which no longer interacts withTah1p, but still interacts withRvb1p, another R2TP subunit. Nop17(N307S) does not interact with other Nop17p(WT) partners. Despite the importance of the Nop17p-Tah1p association, the disruption of this interaction does not affect cell growth, suggesting the involvement of a second factor on the Nop17p and Hsp90p association.
7

Étude des processus de biogenèse des petites particules ribonucléoprotéiques nucléolaires à boîtes C/D (snoRNP C/D) chez la levure Saccharomyces cerevisiae : caractérisation fonctionnelle et structurale d'une machinerie dédiée à l'assemblage de ces RNP / Study of the biogenesis process of box C/D small nucleolar ribonucleoparticles (C/D snoRNPs) in the yeast Saccharomyces cerevisiae : functional and structural characterization of a machinery dedicated to assembly of these RNPs

Rothé, Benjamin 30 March 2012 (has links)
Les protéines de la famille L7Ae sont les constituants de nombreuses RNP essentielles. Chez les vertébrés, les particules snoRNP C/D et H/ACA sont impliquées dans la biogenèse des ribosomes, la UsnRNP U4 dans l'épissage des pré-ARNm, le complexe télomérase dans la réplication des télomères, et les mRNP SECIS dans la traduction des sélénoprotéines. Comme c'est le cas pour la majorité des RNP eucaryotes, leur assemblage, sous forme d'entités fonctionnelles, ne constitue pas un processus autonome et requiert l'intervention de facteurs spécialisés. En basant notre étude sur l'assemblage des snoRNP C/D, dans l'organisme modèle Saccharomyces cerevisiae, et en utilisant des approches de biologie moléculaire, de biochimie et de génétique, nous avons entrepris de caractériser ces événements. Nos travaux ont contribué à identifier un ensemble de protéines, agissant de façon coordonnée au sein d'une machinerie conservée entre la levure et l'homme. Cette dernière est composée de deux principales sous-unités : (i) Rsa1p/NUFIP, une protéine plate-forme, qui interagit avec certaines protéines de la famille L7Ae et facilite l'assemblage des RNP, (ii) le complexe R2TP (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), qui pourrait opérer des remodelages conformationnels nécessaires à la formation des RNP matures. En plus de ces acteurs centraux, d'autres facteurs sont apparus intimement liés à ce mécanisme. La protéine Hit1p/TRIP3, interagit notamment avec Rsa1p/NUFIP et s'est avéré requise pour assurer sa stabilité chez la levure. La chaperonne HSP90, dont le rôle est prédominant chez l'homme, exerce son activité sur certains constituants des RNP. Enfin, la protéine Bcd1p/BCD1 pourrait être associée à cette machinerie dans le cadre spécifique de l'assemblage des snoRNP C/D / The L7Ae family proteins are essential components of many RNPs. In vertebrates, C/D and H/ACA snoRNPs are involved in ribosome biogenesis, the U4 snRNP in pre-mRNA splicing, the telomerase complex in telomeres replication, and mRNP SECIS in selenoproteins translation. Like most eukaryotic RNPs, assembly in functional entities is not an autonomous process and requires the intervention of specialized factors. Basing our study on the assembly of C/D snoRNP in the model organism Saccharomyces cerevisiae, and using approaches of molecular biology, biochemistry and genetics, we undertook to decipher these mechanisms. Our work has helped to identify a set of proteins, acting in a coordinated manner within a machinery conserved between yeast and human. This machinery consists of two major subunits: (i) Rsa1p/NUFIP, a platform protein that interacts with some proteins of the L7Ae family and facilitates the RNPs assembly, (ii) the R2TP complex (Rvb1p/TIP49, Rvb2p/TIP48, Pih1p/PIH1, Tah1p/SPAGH), which could induce conformational remodeling necessary for the formation of mature RNPs. In addition to these key players, other factors appeared closely linked to this mechanism. The Hit1p/TRIP3 protein interacts with Rsa1p/NUFIP and is required to ensure its stability in yeast. HSP90 chaperone, whose role is predominant in human, operates on some components of the RNPs. Finally, the Bcd1p/BCD1 protein is associated specifically with this machinery during C/D snoRNPs assembly
8

The Human Y chromosome and its role in the developing male nervous system

Johansson, Martin M. January 2015 (has links)
Recent research demonstrated that besides a role in sex determination and male fertility, the Y chromosome is involved in additional functions including prostate cancer, sex-specific effects on the brain and behaviour, graft-versus-host disease, nociception, aggression and autoimmune diseases. The results presented in this thesis include an analysis of sex-biased genes encoded on the X and Y chromosomes of rodents. Expression data from six different somatic tissues was analyzed and we found that the X chromosome is enriched in female biased genes and depleted of male biased ones. The second study described copy number variation (CNV) patterns in a world-wide collection of human Y chromosome samples. Contrary to expectations, duplications and not deletions were the most frequent variations. We also discovered novel CNV patterns of which some were significantly overrepresented in specific haplogroups. A substantial part of the thesis focuses on analysis of spatial expression of two Y-encoded brain-specific genes, namely PCDH11Y and NLGN4Y. The perhaps most surprising discovery was the observation that X and Y transcripts of both gene pairs are mostly expressed in different cells in human spinal cord and medulla oblongata. Also, we detected spatial expression differences for the PCDH11X gene in spinal cord. The main focus of the spatial investigations was to uncover genetically coded sexual differences in expression during early development of human central nervous system (CNS). Also, investigations of the expression profiles for 13 X and Y homolog gene pairs in human CNS, adult brain, testes and still-born chimpanzee brain samples were included. Contrary to previous studies, we found only three X-encoded genes from the 13 X/Y homologous gene pairs studied that exhibit female-bias. We also describe six novel non-coding RNAs encoded in the human MSY, some of which are polyadenylated and with conserved expression in chimpanzee brain. The description of dimorphic cellular expression patterns of X- and Y-linked genes should boost the interest in the human specific gene PCDH11Y, and draw attention to other Y-encoded genes expressed in the brain during development. This may help to elucidate the role of the Y chromosome in sex differences during early CNS development in humans. / <p>chinese, finnish, norwegian, schizophrenia, bipolar, bipolar disorder, msy, male specific region Y, PAR1, PAR2, pseudoautosomal, male-biased, female-biased, male biased, female biased, ashkenazi population, structure, variants, YHRD, Elena Jazin, Björn Reinius, Per Ahlberg, brain, hjärna, CNS, central nervous system, IR2, inverted repeat 2, isodicentric, genetics, genetik, padlock, rolling circle, amplification, PCR, sY1191, sY1291, STS, DDX3Y, DAZ, AZFa, AZFb, AZFc, AZF, Repping, haplogroup J, rearrangements, DE-M145, I-M170, E-M96, Q-M242, R-M207, O-M175, G-M201, D-M174, C-M130, NO-M214, N-M231, poland</p>

Page generated in 0.0251 seconds