• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 16
  • 7
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 148
  • 59
  • 23
  • 21
  • 21
  • 19
  • 19
  • 19
  • 19
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Mathematical modelling of thermal processes in laser and electrothermal technologies / Šiluminių procesų lazerinėse ir elektroterminėse technologijose matematinis modeliavimas

Jankevičiūtė, Gerda 16 June 2010 (has links)
In the dissertation mathematical modelling problems in the design of electrical cables and cable fibres in modern vehicles, and of the heating of metals or semiconductors by ultra short (pico- or femtosecond) laser pulses are investigated. The problems are described by systems of differential equations and are solved by applying numerical methods. The methodology of problems being solved includes the following mathematical modelling steps: description of formulated problems using mathematical models, selection of model parameters, development and analysis of numerical algorithms (analysis of approximation errors, solution stability, convergence and accuracy), implementation of algorithms, application of parallel algorithms, comparison of mathematical experiments with results obtained in real experiments. The following main objectives are formulated for this thesis: to create mathematical models of the heat exchange in cable fibres and numerical algorithms, which will enable the virtual simulation of temperature distribution in electrical cables and optimization of geometric parameters of cables; to create mathematical models of laser impact on metals and their numerical algorithms allowing the modelling of material heating and removal processes. The thesis consists of the following main sections: introduction, three chapters, conclusion chapter, bibliography chapter, a list of the author's publications on the dissertation topic. The introductory section of the thesis... [to full text] / Disertacijoje nagrinėjami elektros kabelių ir kabelių pluoštų projektavimo šiuolaikiniuose automobiliuose, metalų arba puslaidininkių kaitinimo ultratrumpais (piko- arba femtosekundiniais) lazerio impulsais matematinio modeliavimo uždaviniai. Nagrinėjami uždaviniai aprašomi diferencialinėmis lygtimis ir sprendžiami skaitiniais metodais. Nagrinėjamų uždavinių metodiką apima šie matematinio modeliavimo etapai: suformuluotų uždavinių aprašymas matematiniais modeliais, modelių parametrų parinkimas, skaitinių algoritmų sudarymas ir tyrimas (aproksimacijos paklaidų, sprendinio stabilumo, konvergavimo ir tikslumo analizė), algoritmų realizavimas, lygiagrečiųjų algoritmų taikymas, skaičiavimo eksperimentų rezultatų palyginimas su realaus eksperimento rezultatais. Disertacijoje suformuluoti šie pagrindiniai darbo tikslai: sukurti šilumos mainų kabelių pluoštuose matematinius modelius ir skaitinės analizės algoritmus, kurie virtualiojo eksperimento būdu leistų modeliuoti temperatūros pasiskirstymą elektros kabeliuose ir optimizuoti geometrinius laidų parametrus; sukurti lazerio poveikio metalui matematinius modelius ir jų skaitinės analizės algoritmus, leidžiančius modeliuoti medžiagos kaitinimo ir pašalinimo procesus. Disertaciją sudaro įvadas, trys skyriai, rezultatų apibendrinimas, naudotos literatūros ir autorės publikacijų disertacijos tema sąrašas. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojami darbo tikslai ir... [toliau žr. visą tekstą]
52

Adaptive parallelization of model-base head tracking

Schodl, Arno January 1999 (has links)
No description available.
53

Algorithm Design Using Spectral Graph Theory

Peng, Richard 01 August 2013 (has links)
Spectral graph theory is the interplay between linear algebra and combinatorial graph theory. Laplace’s equation and its discrete form, the Laplacian matrix, appear ubiquitously in mathematical physics. Due to the recent discovery of very fast solvers for these equations, they are also becoming increasingly useful in combinatorial optimization, computer vision, computer graphics, and machine learning. In this thesis, we develop highly efficient and parallelizable algorithms for solving linear systems involving graph Laplacian matrices. These solvers can also be extended to symmetric diagonally dominant matrices and M-matrices, both of which are closely related to graph Laplacians. Our algorithms build upon two decades of progress on combinatorial preconditioning, which connects numerical and combinatorial algorithms through spectral graph theory. They in turn rely on tools from numerical analysis, metric embeddings, and random matrix theory. We give two solver algorithms that take diametrically opposite approaches. The first is motivated by combinatorial algorithms, and aims to gradually break the problem into several smaller ones. It represents major simplifications over previous solver constructions, and has theoretical running time comparable to sorting. The second is motivated by numerical analysis, and aims to rapidly improve the algebraic connectivity of the graph. It is the first highly efficient solver for Laplacian linear systems that parallelizes almost completely. Our results improve the performances of applications of fast linear system solvers ranging from scientific computing to algorithmic graph theory. We also show that these solvers can be used to address broad classes of image processing tasks, and give some preliminary experimental results.
54

Análisis de rendimiento y optimización de algoritmos paralelos Best-First Search sobre multicore y cluster de multicore

Sanz, Victoria María January 2015 (has links)
El objetivo general de esta tesis se centra en la investigación y desarrollo de algoritmos paralelos de búsqueda en grafos best-first search para arquitecturas multicore y cluster de multicore, que mejoran los existentes y se utilizan para resolver problemas de optimización combinatoria y de planificación, acompañado de un análisis de rendimiento (speedup, eficiencia, escalabilidad) de los mismos. La temática propuesta es de interés en la actualidad por la complejidad computacional de dichos algoritmos de búsqueda y las posibilidades que brindan las arquitecturas mencionadas. Los algoritmos presentados en esta tesis pueden aplicarse para resolver problemas reales como planificación de rutas óptimas, navegación automática de un robot o vehículo, alineamiento óptimo de secuencias, entre otros. Los temas de investigación derivados son múltiples y se refieren tanto a la paralelización de algoritmos sobre (a) arquitecturas de memoria compartida, como son los multicore (b) arquitecturas de memoria distribuida, como son los clusters (c) y también sobre arquitecturas híbridas, tal es el caso de los clusters de multicore. El aporte de la tesis es el desarrollo de dos algoritmos paralelos best-first-search propios, uno apto para su ejecución sobre máquinas de memoria compartida (multicore) y otro apto para máquinas de memoria distribuida (cluster), basados en el algoritmo HDA* (Hash Distributed A*), en los cuales se incluyen técnicas originales que optimizan su rendimiento. Asimismo, se presenta un análisis de rendimiento de los algoritmos desarrollados a medida que escala la carga de trabajo y la arquitectura paralela subyacente. Para finalizar, se compara la memoria consumida por ambos algoritmos y el rendimiento alcanzado cuando se los ejecuta sobre una máquina multicore; estos análisis presentan originalidad en el área. Los resultados arrojados indican que se obtendría un beneficio al convertir HDA* en una aplicación híbrida, cuando la arquitectura subyacente es un cluster de multicore, por lo que se sientan las bases para éste algoritmo híbrido.
55

Integrated compiler optimizations for tensor contractions

Gao, Xiaoyang, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 140-144).
56

Architectures and algorithms for high performance switching

Prakash, Amit, Aziz, Adnan, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Adnan Aziz. Vita. Includes bibliographical references. Also available from UMI.
57

Parallelization of light scattering spectroscopy and its integration with computational grid environments

Paladugula, Jithendar. January 2004 (has links)
Thesis (M.S.)--University of Florida, 2004. / Title from title page of source document. Document formatted into pages; contains 74 pages. Includes vita. Includes bibliographical references.
58

Performance of MIMO space-time coding algorithms on a parallel DSP test platform /

Neal, Beau C., January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2007. / Includes bibliographical references (p. 119-121).
59

Optimal dimensional synthesis of planar parallel manipulators with respect to workspaces

Hay, Alexander Morrison. January 2004 (has links)
Thesis (Ph.D.(Mechanical Engineering))--University of Pretoria, 2003. / Summaries in Afrikaans and English. Includes bibliographical references.
60

Développement de schémas de découplage pour la résolution de systèmes dynamiques sur architecture de calcul distribuée / Development of decoupled numerical scheme in solving dynamical systems on parallel computing architecture

Pham, Duc Toan 30 September 2010 (has links)
Nous nous intéressons dans ce mémoire à des méthodes de parallélisation par découplage du système dynamique. Plusieurs applications numériques de nos jours conduisent à des systèmes dynamiques de grande taille et nécessitent des méthodes de parallélisation en conséquence pour pouvoir être résolues sur les machines de calcul à plusieurs processeurs. Notre but est de trouver une méthode numérique à la fois consistante et stable pour réduire le temps de la résolution numérique. La première approche consiste à découpler le système dynamique en sous-systèmes contenant des sous-ensembles de variables indépendants et à remplacer les termes de couplage par l’extrapolation polynomiale. Une telle méthode a été introduite sous le nom de schéma C (p, q, j), nous améliorons ce schéma en introduisant la possibilité à utiliser des pas de temps adaptatifs. Cependant, notre étude montre que cette méthode de découplage ne peut satisfaire les propriétés numériques que sous des conditions très strictes et ne peut donc pas s’appliquer aux problèmes raides présentant des couplages forts entre les sous-systèmes. Afin de pouvoir répondre à cette problématique de découplage des systèmes fortement couplés, on introduit le deuxième axe de recherche, dont l’outil principal est la réduction d’ordre du modèle. L’idée est de remplacer le couplage entre les sous-ensembles de variables du système par leurs représentations sous forme réduite. Ces sous-systèmes peuvent être distribués sur une architecture de calcul parallèle. Notre analyse du schéma de découplage résultant nous conduit à définir un critère mathématique pour la mise à jour des bases réduites entre les sous-systèmes. La méthode de réduction d’ordre du modèle utilisée est fondée sur la décomposition orthogonale aux valeurs propres (POD). Cependant, ne disposant pas à priori des données requises pour la construction de la base réduite, nous proposons alors un algorithme de construction incrémentale de la base réduite permettant de représenter le maximum des dynamiques des solutions présentes dans l’intervalle de simulation. Nous avons appliqué la méthode proposée sur les différents systèmes dynamiques tels que l’exemple provenant d’une EDP et celui provenant de l’équation de Navier Stokes. La méthode proposée montre l’avantage de l’utilisation de l’algorithme de découplage basé sur la réduction d’ordre. Les solutions numériques sont obtenues avec une bonne précision comparées à celle obtenue par une méthode de résolution classique tout en restant très performante selon le nombre de sous-systèmes définis. / In this thesis, we are interested in parallelization algorithm for solving dynamical systems. Many industrial applications nowadays lead to large systems of huge number of variables. A such dynamical system requires parallel method in order to be solved on parallel computers. Our goal is to find a robust numerical method satisfying stability and consistency properties and suitable to be implemented in parallel machines. The first method developed in this thesis consists in decoupling dynamical system into independent subsystems and using polynomial extrapolation for coupled terms between subsystems. Such a method is called C(p; q; j).We have extended this numerical scheme to adaptive time steps. However, this method admits poor numerical properties and therefore cannot be applied in solving stiff systems with strong coupling terms.When dealing with systems whose variables are strongly coupled, contrary to the technique of using extrapolation for coupled terms, one may suggest to use reduced order models to replace those terms and solve separately each independent subsystems. Thus, we introduced the second approach consisting in using order reduction technique in decoupling dynamical systems. The order reduction method uses the Proper Orthogonal Decomposition. Therefore, when constructing reduced order models, we do not have all the solutions required for the POD basis, then we developed a technique of updating the POD during the simulation process. This method is applied successfully to solve different examples of dynamical systems : one example of stiff ODE provided from PDE and the other was the ODE system provided from the Nervier-Stokes equations. As a result, we have proposed a robust method of decoupling dynamical system based on reduced order technique. We have obtained good approximations to the reference solution with appropriated precision. Moreover, we obtained a great performance when solving the problem on parallel computers.

Page generated in 0.0418 seconds