• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques contributions vers la simulation parallèle de la cinétique neutronique et la prise en compte de données observées en temps réel / Some contributions towards the parallel simulation of time dependent neutron transport and the integration of observed data in real time

Mula Hernandez, Olga 24 September 2014 (has links)
Dans cette thèse nous avons tout d'abord développé un solveur neutronique de cinétique transport 3D en géométrie déstructurée avec une discrétisation spatiale par éléments finis discontinus (solveur MINARET). L'écriture d'un tel code représente en soi une contribution importante dans la physique des réacteurs car il permettra de connaître de façon très précise l'état du c¿ur au cours d'accidents graves. Il jouera aussi un rôle important pour des études de fluence de la cuve des réacteurs. D'un point de vue mathématique, l'apport le plus important a consisté en l'implémentation d'algorithmes adaptés aux architectures de calcul parallèle, permettant de réduire de façon significative les temps de calcul. Un effort particulier a été mené pour paralléliser de façon efficace la variable temporelle par l'algorithme pararéel en temps. Nous avons ensuite cherché à développer une méthode qui permettrait d'utiliser MINARET comme outil de surveillance pendant l'opération d'un réacteur nucléaire. Une des difficultés majeures de ce problème réside dans le besoin de fournir les simulations en temps réel. La question a été abordée en développant tout d'abord une généralisation de la méthode Empirical Interpolation (EIM) grâce à laquelle on a pu définir un processus d'interpolation bien posé pour des fonctions appartenant à des espaces de Banach. Ceci est rendu possible par l'utilisation de formes linéaires d'interpolation au lieu des traditionnels points d'interpolation et une partie de cette thèse a été consacrée à la compréhension des propriétés théoriques de cette méthode (analyse de convergence sous hypothèse d'ensemble de petite dimension de Kolmogorov et étude de sa stabilité). / In this thesis, we have first developed a time dependent 3D neutron transport solver on unstructured meshes with discontinuous Galerkin finite elements spatial discretization. The solver (called MINARET) represents in itself an important contribution in reactor physics thanks to the accuracy that it can provide in the knowledge of the state of the core during severe accidents. It will also play an important role on vessel fluence calculations. From a mathematical point of view, the most important contribution has consisted in the implementation of algorithms that are well adapted for modern parallel architectures and that significantly decrease the computing times. A special effort has been done in order to efficiently parallelize the time variable by the use of the parareal in time algorithm. On a second stage, we have developed the foundations of a method with which we could use MINARET to monitor in real time the population of neutrons during the operation of the reactor. One of the major difficulties relies in the necessity of providing computations in real time. This question has been addressed by proposing an extension of the Empirical Interpolation Method (EIM) thanks to which a well-posed interpolation procedure has been defined for functions belonging to Banach spaces. This is possible thanks to the use of interpolating linear forms instead of the traditional interpolation points and a part of this thesis has been devoted to the understanding of the theoretical properties of this method (convergence analysis under the hypothesis of small Kolmogorov n-width and stability of the procedure).
2

Quelques contributions vers la simulation parallèle de la cinétique neutronique et la prise en compte de données observées en temps réel

Mula, Olga 24 September 2014 (has links) (PDF)
Dans cette thèse nous avons tout d'abord développé un solveur neutronique de cinétique transport 3D en géométrie déstructurée avec une discrétisation spatiale par éléments finis (solveur MINARET). L'écriture d'un tel code représente en soi une contribution importante dans la physique des réacteurs car il permettra de connaître de façon très précise l'état du coeur au cours d'accidents graves. Il jouera aussi un rôle très important pour des études de fluence de la cuve des réacteurs. D'un point de vue mathématique, l'apport le plus important dans l'écriture de ce solveur a consisté en l'implémentation d'algorithmes modernes adaptés aux architectures actuelles et à venir de calcul parallèle, permettant de réduire de façon significative les temps de calcul. Un effort particulier a été mené pour paralléliser de façon efficace la variable temporelle par l'algorithme pararéel en temps. Ce travail a consisté dans un premier temps à analyser les performances que le schéma classique de pararéel apporte dans la résolution de l'équation de transport de neutrons. Ensuite, nous avons cherché à améliorer ces performances en proposant un schéma de pararéel qui intègre de façon plus optimisée la présence de schémas itératifs autres que le pararéel dans la résolution de chaque pas de temps de l'équation du transport. L'idée principale de ce nouveau schéma consiste à limiter le nombre d'itérations internes pour chaque pas de temps du solveur fin et d'atteindre la convergence au cours des itérations pararéelles. Dans un second temps, une réflexion a été entamée autour de la question suivante: étant donné le haut degré de précision que MINARET fournit dans la connaissance de la population neutronique, serait-il possible de l'utiliser en tant qu'outil de surveillance pendant l'opération d'un réacteur nucléaire? Et, qui plus est, comment rendre un tel outil à la fois cohérent et complémentaire par rapport aux mesures prises \textit{in situ}? Une des difficultés majeures de ce problème réside dans le besoin de fournir les simulations en temps réel alors que, malgré nos efforts pour accélérer les calculs, les méthodes de discrétisation utilisées dans MINARET ne permettent pas des calculs de coeur à une telle vitesse. Cette question a été abordée en développant tout d'abord une généralisation de la méthode Empirical Interpolation (EIM) grâce à laquelle on a pu définir un processus d'interpolation bien posé pour des fonctions appartenant à des espaces de Banach. Ceci est rendu possible par l'utilisation de formes linéaires d'interpolation au lieu des traditionnels points d'interpolation et une partie de cette thèse a été consacrée à la compréhension des propriétés théoriques de cette méthode (analyse de convergence sous hypothèse d'ensemble de petite dimension de Kolmogorov et étude de sa stabilité). Ce processus d'interpolation (appelé Generalized EIM) permet de reconstruire en temps réel des processus physiques de la façon suivante: étant donné un système pouvant être décrit par une EDP paramétrée et sur lequel des mesures peuvent être prises \textit{in situ}, on construit d'abord une base d'interpolation constituée de solutions de cette EDP pour différentes valeurs du paramètre grâce à GEIM (ceci est fait par un algorithme greedy). On donne ensuite une approximation en temps réel de l'état du système via une fonction interpolée exprimée dans la base calculée et qui utilise des mesures acquises \textit{in situ} comme données d'entrée (et modélisées mathématiquement par les formes linéaires). La méthode a été appliquée avec succès dans des exemples simples (équations de Laplace et de Stokes) et nous espérons que les développements actuels et à venir pourront mener à son emploi dans des cas réels plus complexes comme celui de la reconstruction de la population neutronique dans un coeur de réacteur avec MINARET.
3

Quelques algorithmes rapides pour la finance quantitative / Some fast algorithms for quantitative finance

Sall, Guillaume 21 December 2017 (has links)
Dans cette thèse, nous nous intéressons à des noeuds critiques du calcul du risque de contrepartie, la valorisation rapide des produits dérivées et de leurs sensibilités. Nous proposons plusieurs méthodes mathématiques et informatiques pour répondre à cette problématique. Nous contribuons à quatre domaines différents: une extension de la méthode Vibrato et l'application des méthodes multilevel Monte Carlo pour le calcul des grecques à ordre élevé n>1 avec une technique de différentiation automatique. La troisième contribution concerne l'évaluation des produits Américain, ici nous nous servons d'un schéma pararéel pour l'accélération du processus de valorisation et nous faisons également une application pour la résolution d'une équation différentielle stochastique rétrograde. La quatrième contribution est la conception d'un moteur de calcul performant à architecture parallèle. / In this thesis, we will focus on the critical node of the computation of counterparty credit risk, the fast evaluation of financial derivatives and their sensitivities. We propose several mathematical and computer-based methods to address this issue. We have contributed to four areas: an extension of the Vibrato method and an application of the weighted multilevel Monte Carlo for the computation of the greeks for high order derivatives n>1 with automatic differentiation. The third contribution concerns the evaluation of American style option, here we use a parareal scheme to speed up the assessing process and we made an application for solving backward stochastic differential equations. The last contribution is the conception of an efficient computation engine for financial derivatives with a parallel architecture.
4

Modélisation multi-échelles et calculs parallèles appliqués à la simulation de l'activité neuronale / Multiscale modeling and parallel computations applied to the simulation of neuronal activity

Bedez, Mathieu 18 December 2015 (has links)
Les neurosciences computationnelles ont permis de développer des outils mathématiques et informatiques permettant la création, puis la simulation de modèles représentant le comportement de certaines composantes de notre cerveau à l’échelle cellulaire. Ces derniers sont utiles dans la compréhension des interactions physiques et biochimiques entre les différents neurones, au lieu d’une reproduction fidèle des différentes fonctions cognitives comme dans les travaux sur l’intelligence artificielle. La construction de modèles décrivant le cerveau dans sa globalité, en utilisant une homogénéisation des données microscopiques est plus récent, car il faut prendre en compte la complexité géométrique des différentes structures constituant le cerveau. Il y a donc un long travail de reconstitution à effectuer pour parvenir à des simulations. D’un point de vue mathématique, les différents modèles sont décrits à l’aide de systèmes d’équations différentielles ordinaires, et d’équations aux dérivées partielles. Le problème majeur de ces simulations vient du fait que le temps de résolution peut devenir très important, lorsque des précisions importantes sur les solutions sont requises sur les échelles temporelles mais également spatiales. L’objet de cette étude est d’étudier les différents modèles décrivant l’activité électrique du cerveau, en utilisant des techniques innovantes de parallélisation des calculs, permettant ainsi de gagner du temps, tout en obtenant des résultats très précis. Quatre axes majeurs permettront de répondre à cette problématique : description des modèles, explication des outils de parallélisation, applications sur deux modèles macroscopiques. / Computational Neuroscience helped develop mathematical and computational tools for the creation, then simulation models representing the behavior of certain components of our brain at the cellular level. These are helpful in understanding the physical and biochemical interactions between different neurons, instead of a faithful reproduction of various cognitive functions such as in the work on artificial intelligence. The construction of models describing the brain as a whole, using a homogenization microscopic data is newer, because it is necessary to take into account the geometric complexity of the various structures comprising the brain. There is therefore a long process of rebuilding to be done to achieve the simulations. From a mathematical point of view, the various models are described using ordinary differential equations, and partial differential equations. The major problem of these simulations is that the resolution time can become very important when important details on the solutions are required on time scales but also spatial. The purpose of this study is to investigate the various models describing the electrical activity of the brain, using innovative techniques of parallelization of computations, thereby saving time while obtaining highly accurate results. Four major themes will address this issue: description of the models, explaining parallelization tools, applications on both macroscopic models.
5

Techniques variationnelles et calcul parallèle en imagerie : Estimation du flot optique avec luminosité variable en petits et larges déplacements / Variational techniques and parallel computing in computer vision : Optical flow estimation with varying illumination in small and large displacements

Gilliocq-Hirtz, Diane 07 July 2016 (has links)
Le travail présenté dans cette thèse porte sur l'estimation du flot optique par méthodes variationnelles en petits et en grands déplacements. Nous proposons un modèle basé sur la combinaison locale-globale à laquelle nous ajoutons la prise en compte des variations de la luminosité. La particularité de ce manuscrit réside dans l'utilisation de la méthode des éléments finis pour la résolution des équations. En effet, cette méthode se fait pour le moment très rare dans le domaine du flot optique. Grâce à ce choix de résolution, nous proposons d'implémenter un contrôle local de la régularisation ainsi qu'une adaptation de maillage permettant d'affiner la solution au niveau des arêtes de l'image. Afin de réduire les temps de calcul, nous parallélisons les programmes. La première méthode implémentée est la méthode parallèle en temps appelée pararéel. En couplant un solveur grossier et un solveur fin, cet algorithme permet d'accélérer les calculs. Pour pouvoir obtenir un gain de temps encore plus important et également traiter les séquences en haute définition, nous utilisons ensuite une méthode de décomposition de domaine. Combinée au solveur massivement parallèle MUMPS, cette méthode permet un gain de temps de calcul significatif. Enfin, nous proposons de coupler la méthode de décomposition de domaine et le pararéel afin de profiter des avantages de chacune. Dans une seconde partie, nous appliquons tous ces modèles dans le cas de l'estimation du flot optique en grands déplacements. Nous proposons de nous servir du pararéel afin de traiter la non-linéarité de ce problème. Nous terminons par un exemple concret d'application du flot optique en restauration de films. / The work presented in this thesis focuses on the estimation of the optical flow through variational methods in small and large displacements. We propose a model based on the combined local-global strategy to which we add the consideration of brightness intensity variations. The particularity of this manuscript is the use of the finite element method to solve the equations. Indeed, for now, this method is really rare in the field of the optical flow. Thanks to this choice of resolution, we implement an adaptive control of the regularization and a mesh adaptation to refine the solution on the edges of the image. To reduce computation times, we parallelize the programs. The first method implemented is a parallel in time method called parareal. By combining a coarse and a fine solver, this algorithm speeds up the computations. To save even more time and to also be able to handle high resolution sequences, we then use a domain decomposition method. Combined with the massively parallel solver MUMPS, this method allows a significant reduction of computation times. Finally, we propose to couple the domain decomposition method and the parareal to have the benefits of both methods. In the second part, we apply all these models to the case of the optical flow estimation in large displacements. We use the parareal method to cope with the non-linearity of the problem. We end by a concrete example of application of the optical flow in film restoration.
6

Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace

Duarte, Max 09 December 2011 (has links) (PDF)
Nous abordons le développement d'une nouvelle génération de méthodes numériques pour la résolution des EDP évolutives qui modélisent des phénomènes multi-échelles en temps et en espace issus de divers domaines applicatifs. La raideur associée à ce type de problème, que ce soit via le terme source chimique qui présente un large spectre d'échelles de temps caractéristiques ou encore via la présence de fort gradients très localisés associés aux fronts de réaction, implique en général de sévères difficultés numériques. En conséquence, il s'agit de développer des méthodes qui garantissent la précision des résultats en présence de forte raideur en s'appuyant sur des outils théoriques solides, tout en permettant une implémentation aussi efficace. Même si nous étendons ces idées à des systèmes plus généraux par la suite, ce travail se focalise sur les systèmes de réaction-diffusion raides. La base de la stratégie numérique s'appuie sur une décomposition d'opérateur spécifique, dont le pas de temps est choisi de manière à respecter un niveau de précision donné par la physique du problème, et pour laquelle chaque sous-pas utilise un intégrateur temporel d'ordre élevé dédié. Ce schéma numérique est ensuite couplé à une approche de multirésolution spatiale adaptative permettant une représentation de la solution sur un maillage dynamique adapté. L'ensemble de cette stratégie a conduit au développement du code de simulation générique 1D/2D/3D académique MBARETE de manière à évaluer les développements théoriques et numériques dans le contexte de configurations pratiques raides issue de plusieurs domaines d'application. L'efficacité algorithmique de la méthode est démontrée par la simulation d'ondes de réaction raides dans le domaine de la dynamique chimique non-linéaire et dans celui de l'ingénierie biomédicale pour la simulation des accidents vasculaires cérébraux caractérisée par un terme source "chimique complexe''. Pour étendre l'approche à des applications plus complexes et plus fortement instationnaires, nous introduisons pour la première fois une technique de séparation d'opérateur avec pas de temps adaptatif qui permet d'atteindre une précision donnée garantie malgré la raideur des EDP. La méthode de résolution adaptative en temps et en espace qui en résulte, étendue au cas convectif, permet une description consistante de problèmes impliquant une très large palette d'échelles de temps et d'espace et des scénarios physiques très différents, que ce soit la propagation des décharges répétitives pulsées nanoseconde dans le domaine des plasmas ou bien l'allumage et la propagation de flammes dans celui de la combustion. L'objectif de la thèse est l'obtention d'un solveur numérique qui permet la résolution des EDP raides avec contrôle de la précision du calcul en se basant sur des outils d'analyse numérique rigoureux, et en utilisant des moyens de calculs standard. Quelques études complémentaires sont aussi présentées comme la parallélisation temporelle, des techniques de parallélisation à mémoire partagée et des outils de caractérisation mathématique des schémas de type séparation d'opérateur.

Page generated in 0.0358 seconds