Spelling suggestions: "subject:"martial differential equations"" "subject:"martial ifferential equations""
191 |
Mathematical model of plant nutrient uptakeRoose, T. January 2000 (has links)
This thesis deals with the mathematical modelling of nutrient uptake by plant roots. It starts with the Nye-Tinker-Barber model for nutrient uptake by a single bare cylindrical root. The model is treated using matched asymptotic expansion and an analytic formula for the rate of nutrient uptake is derived for the first time. The basic model is then extended to include root hairs and mycorrhizae, which have been found experimentally to be very important for the uptake of immobile nutrients. Again, analytic expressions for nutrient uptake are derived. The simplicity and clarity of the analytical formulae for the solution of the single root models allows the extension of these models to more realistic branched roots. These models clearly show that the `volume averaging of branching structure' technique commonly used to extend the Nye-Tinker-Barber with experiments can lead to large errors. The same models also indicate that in the absence of large-scale water movement, due to rainfall, fertiliser fails to penetrate into the soil. This motivates us to build a model for water movement and uptake by branched root structures. This model considers the simultaneous flow of water in the soil, uptake by the roots, and flow within the root branching network to the stems of the plant. The water uptake model shows that the water saturation can develop pseudo-steady-state wet and dry zones in the rooting region of the soil. The dry zone is shown to stop the movement of nutrient from the top of the soil to the groundwater. Finally we present a model for the simultaneous movement and uptake of both nutrients and water. This is discussed as a new tool for interpreting available experimental results and designing future experiments. The parallels between evolution and mathematical optimisation are also discussed.
|
192 |
Codimension-two free boundary problemsGillow, Keith A. January 1998 (has links)
Over the past 30 years the study of free boundary problems has stimulated much work. However, there exists a widely occurring, but little studied subclass of free boundary problems in which the free boundary has dimension two fewer than that of the underlying space rather than the more commonly studied case of one less. These problems are called `codimension-two' free boundary problems. In Chapter 1 the typical geometries required for such problems, the main mathematical techniques and the methodology used are discussed. Then, in Chapter 2, the techniques required to solve them are demonstrated using the particular example of the water entry problem. Further results for the water entry problem are then derived including an analysis of the relatively poorly understood water exit problem. In Chapter 3 a review is given of some classical contact and crack problems in solid mechanics. The inclusion of a cohesive zone in a dynamic type-III crack problem is considered. The Muskhelishvili potential method is presented and used to solve both a contact and crack problem. This enables the solution of a type-I crack problem relating to an ink delivery system to be found. In Chapter 4 a problem posed by car windscreen forming is addressed. A local solution near a corner is analysed to explain when and how point forces occur at the corners of the frame on which the simply supported windscreen rests. Then the full problem is solved numerically for different types of boundary condition. Chapters 5 and 6 deal with several sintering problems in viscous flow highlighting the value of the methodology introduced in Chapter 1. It will be shown how the Muskhelishvili potential method also carries over to Stokes flow problems. The difficulties of matching to an inner as opposed to an outer region are investigated. Last two interface problems between immiscible liquids are considered which show how the solution procedure is adapted when the field equation in the thin region is non-trivial. In the final chapter results are summarised, open problems listed and conclusions drawn.
|
193 |
The role of acidity in tumour developmentSmallbone, Kieran January 2007 (has links)
Acidic pH is a common characteristic of human tumours. It has a significant impact on tumour progression and response to therapies. In this thesis, we utilise mathematical modelling to examine the role of acidosis in the interaction between normal and tumour cell populations. In the first section we investigate the cell–microenvironmental interactions that mediate somatic evolution of cancer cells. The model predicts that selective forces in premalignant lesions act to favour cells whose metabolism is best suited to respond to local changes in oxygen, glucose and pH levels. In particular the emergent cellular phenotype, displaying increased acid production and resistance to acid-induced toxicity, has a significant proliferative advantage because it will consistently acidify the local environment in a way that is toxic to its competitors but harmless to itself. In the second section we analyse the role of acidity in tumour growth. Both vascular and avascular tumour dynamics are investigated, and a number of different behaviours are observed. Whilst an avascular tumour always proceeds to a benign steady state, a vascular tumour may display either benign or invasive dynamics, depending on the value of a critical parameter. Extensions of the model show that cellular quiescence, or non-proliferation, may provide an explanation for experimentally observed cycles of acidity within tumour tissue. Analysis of both models allows assessment of novel therapies directed towards changing the level of acidity within the tumour. Finally we undertake a comparison between experimental tumour pH images and the models of acid dynamics set out in previous chapters. This analysis will allow us to assess and verify the previous modelling work, giving the mathematics a firm biological foundation. Moreover, it provides a methodology of calculating important diagnostic parameters from pH images.
|
194 |
Study of Singular Capillary Surfaces and Development of the Cluster Newton MethodAoki, Yasunori January 2012 (has links)
In this thesis, we explore two important aspects of study of differential equations: analytical and computational aspects. We first consider a partial differential equation model for a static liquid surface (capillary surface). We prove through mathematical analyses that the solution of this mathematical model (the Laplace-Young equation) in a cusp domain can be bounded or unbounded depending on the boundary conditions. By utilizing the knowledge we have obtained about the singular behaviour of the solution through mathematical analysis, we then construct a numerical methodology to accurately approximate unbounded solutions of the Laplace-Young equation. Using this accurate numerical methodology, we explore some remaining open problems on singular solutions of the Laplace-Young equation. Lastly, we consider ordinary differential equation models used in the pharmaceutical industry and develop a numerical method for estimating model parameters from incomplete experimental data. With our numerical method, the parameter estimation can be done significantly faster and more robustly than with conventional methods.
|
195 |
Limiting Processes in Evolutionary Equations - A Hilbert Space Approach to HomogenizationWaurick, Marcus 21 April 2011 (has links) (PDF)
In a Hilbert space setting homogenization of evolutionary equations is discussed. In order to do so, a suitable topology on material laws is introduced and several properties of that topology are shown. With those properties homogenization theorems of a large class of linear evolutionary problems of classical mathematical physics can be obtained. The results are exemplified by the equations of piezo-electro-magnetism.
|
196 |
On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditionsKennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
|
197 |
On the isoperimetric problem for the Laplacian with Robin and Wentzell boundary conditionsKennedy, James Bernard January 2010 (has links)
Doctor of Philosophy / We consider the problem of minimising the eigenvalues of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu} + \alpha u = 0$ and generalised Wentzell boundary conditions $\Delta u + \beta \frac{\partial u}{\partial \nu} + \gamma u = 0$ with respect to the domain $\Omega \subset \mathbb R^N$ on which the problem is defined. For the Robin problem, when $\alpha > 0$ we extend the Faber-Krahn inequality of Daners [Math. Ann. 335 (2006), 767--785], which states that the ball minimises the first eigenvalue, to prove that the minimiser is unique amongst domains of class $C^2$. The method of proof uses a functional of the level sets to estimate the first eigenvalue from below, together with a rearrangement of the ball's eigenfunction onto the domain $\Omega$ and the usual isoperimetric inequality. We then prove that the second eigenvalue attains its minimum only on the disjoint union of two equal balls, and set the proof up so it works for the Robin $p$-Laplacian. For the higher eigenvalues, we show that it is in general impossible for a minimiser to exist independently of $\alpha > 0$. When $\alpha < 0$, we prove that every eigenvalue behaves like $-\alpha^2$ as $\alpha \to -\infty$, provided only that $\Omega$ is bounded with $C^1$ boundary. This generalises a result of Lou and Zhu [Pacific J. Math. 214 (2004), 323--334] for the first eigenvalue. For the Wentzell problem, we (re-)prove general operator properties, including for the less-studied case $\beta < 0$, where the problem is ill-posed in some sense. In particular, we give a new proof of the compactness of the resolvent and the structure of the spectrum, at least if $\partial \Omega$ is smooth. We prove Faber-Krahn-type inequalities in the general case $\beta, \gamma \neq 0$, based on the Robin counterpart, and for the ``best'' case $\beta, \gamma > 0$ establish a type of equivalence property between the Wentzell and Robin minimisers for all eigenvalues. This yields a minimiser of the second Wentzell eigenvalue. We also prove a Cheeger-type inequality for the first eigenvalue in this case.
|
198 |
Critical point theory with applications to semilinear problems without compactness /Maad, Sara, January 2002 (has links)
Diss. Uppsala : Univ., 2002.
|
199 |
Numerical computations with fundamental solutions /Sundqvist, Per, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2005. / Härtill 5 uppsatser.
|
200 |
Μερικές μέθοδοι εύρεσης και μελέτης κυματικών λύσεωνΚρεμμύδας, Ανδρέας 27 December 2010 (has links)
Η παρούσα εργασία ασχολείται με μεθόδους εύρεσης κυματικών λύσεων καθώς και λύσεων οδευόντων κυμάτων επί σειράς πολύ γνωστών μερικών διαφορικών εξισώσεων καθώς και με θεωρήματα μελέτης της ύπαρξης και της μοναδικότητας, ευστάθειας, ασυμπτωτικής συμπεριφοράς και μονοτονίας των ανωτέρω λύσεων. Θα περιοριστούμε σε μερικές ansatze μεθόδους εύρεσης κυματικών λύσεων, καθώς και στην ύπαρξη και μοναδικότητα ειδικών κατηγοριών κυματικών λύσεων. / --
|
Page generated in 0.1766 seconds