Spelling suggestions: "subject:"martial differential equations"" "subject:"martial ifferential equations""
211 |
Sobre problemas de Ambrosetti-Prodi para sistemas elípticos com crescimento crítico unilateral / On Ambrosetti-Prodi type problems for elliptic systems with unilateral critical growthRibeiro, Bruno Henrique Carvalho 16 August 2018 (has links)
Orientadores: Djairo Guedes de Figueiredo, João Marcos Bezerra do Ó / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-16T16:52:57Z (GMT). No. of bitstreams: 1
Ribeiro_BrunoHenriqueCarvalho_D.pdf: 1676664 bytes, checksum: 8517caa733a0141397500732b70a6ae6 (MD5)
Previous issue date: 2010 / Resumo: Estudamos problemas do tipo Ambrosetti-Prodi para classes de sistemas elípticos gradientes com não-linearidades em crescimento crítico unilateral de Sobolev e de Trudinger-Moser. Com uso de métodos variacionais, provamos multiplicidade de solução para problemas homogêneos sem ressonância na parte linear e existência de solução não-trivial para problemas homogêneos com ressonância / Abstract: We study Ambrosetti-Prodi problems for classes of gradient elliptic systems with nonlinearities in the critical growth range of Sobolev and Trudinger-Moser types. Using variational methods, we prove multiplicity of solutions for nonhomogeneous problems without resonance in the linear part and homogeneous problems involving resonance / Doutorado / Analise / Doutor em Matemática
|
212 |
Análise matemática de problemas de solidificação com movimentação do material / Mathematical analysis of solidification problems with displacement of the materialAssunção, Welington Vieira 05 March 2011 (has links)
Orientador: José Luiz Boldrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T03:27:06Z (GMT). No. of bitstreams: 1
Assuncao_WelingtonVieira_D.pdf: 1542673 bytes, checksum: ae0d691484b76fdb7b684683e92d9944 (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho analisamos dois sistemas de equações diferenciais parciais não lineares que modelam mudanças de fases em materiais viscoelásticos sujeitos à efeitos térmicos. Tais sistemas apresentam uma equação de balanço de energia interna, responsável pela evolução da temperatura, uma equação de evolução para a variável campo de fases, cujos valores determinam a fase do material, e uma equação do balanço de momento que determina os deslocamentos. Nosso primeiro modelo está relacionado com o de Rocca e Rossi no artigo "Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials", J. Differential Equations 245 (2008), pp. 3327-3375. Elas provaram a existência de soluções locais no tempo com valores inteiramente contidos na zona de mescla entre sólido e líquido (a chamada "mushy zone"). Com a inclusão de dissipação e calor latente constante, no nosso primeiro modelo provamos a existência global no tempo de soluções que podem tocar as chamadas barreiras de potencial, correspondendo a estados puramente líquido ou sólido. Analisamos também o caso de materiais isocóricos, obtendo resultados semelhantes ao do modelo anterior. Para provar a existência de soluções, no primeiro modelo primeiramente obtemos soluções de certos problemas regularizados usando argumentos de pontos fixos; em seguida, por métodos de compacidade, passamos ao limite para obtermos soluções do problema original. Na análise do segundo modelo, além da regularização, usamos uma variante do método de compressibilidade artificial / Abstract: In this work we are interested in analyzing two systems of nonlinear partial differential equations modeling phase changes in viscoelastic materials subject to thermal effects. The systems features an internal energy balance equation, governing the evolution of temperature, an evolution equation for the phase field, whose values determine the state of material, and a moment balance equation governing the displacement. Our first model is related to the one in Rocca and Rossi's paper "Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials", J. Differential Equations 245 (2008), pp. 3327-3375). In that paper, they proof the existence of local solutions in time with values contained entirely within the region of mixed between solid and liquid (called "mushy zone"). With the inclusion of dissipation and constant latent heat, in our first model we proof the existence of global solutions in time that may touch the potential barriers, which correspond to pure solid or pure liquid states. We also analyzed the case of isochoric materials, obtaining similar results to the previous model. To proof the existence of solutions, in the first model we firstly obtain solutions of certain regularized problems using fixed point arguments; next, by compactness methods, we pass to the limit to obtain solutions of the original problem. In the analysis of the second model, in addition to regularization, we use a variant of artificial compressible method / Doutorado / Analise / Doutor em Matemática
|
213 |
Unicidade e não-degenerescencia para problemas envolvendo p-laplaciano em aneis / Uniqueness and nondegeneracy for problems involving p-laplacian in annuliDiniz, Hugo Alex Carneiro 23 August 2005 (has links)
Orientador: Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica / Made available in DSpace on 2018-08-04T21:17:17Z (GMT). No. of bitstreams: 1
Diniz_HugoAlexCarneiro_D.pdf: 770650 bytes, checksum: 55f077fc4cf6042e72a4b852d549e423 (MD5)
Previous issue date: 2005 / Resumo: Neste trabalho estudamos a unicidade e a não-degenerescência de soluções positi-vas radiais para problemas não-autônomos envolvendo o p-Iaplaciano em anéis e bolas, com condição de Neumann na parte interna do anel, e condição de Dirichlet na parte externa. Quando o domínio é uma bola, temos apenas a condição de Dirichlet. Consideraremos três perfis diferentes para o problema: sublinear, superlinear e positivo, superlinear com parte negativa. Utilizando a técnica de Coffman, a qual consiste em estudar os zeros da solu-ção do problema linearizado, através de argumentos de comparação de Sturm, provamos primeiramente a não-degenerescência. Pelo método de "shooting", obtemos a unicidade. Como aplicação, demonstramos um resultado de unicidade para o laplaciano em domínios não-simétricos (até mesmo não-convexos) "próximos" a uma bola / Abstract: In this work, we study uniqueness and non-degeneracy of positive radial solutions for non-autonomous problems involving p-Iaplacian in annuli and balls, with Neumann condition in the inner part of annulus, and Dirichlet condition in the outer part. We consider three different problems: sublinear, superlinear and positive, superlinear with a negative part. Using the Coffman's technique, which consists in studying the zeros of the solution of the linearized problem, through Sturm comparison arguments we prove non-degeneracy. By the "shooting" method, we prove uniqueness. As an application, we demonstrate a uniqueness result for laplacian in non-symmetric (even non-convex) domains ''near'' a baIl / Doutorado / Doutor em Matemática
|
214 |
Modelagem matematica e simulação computacional da presença de materiais impactantes toxicos em casos de dinamica populacional com competição inter e intra-especifica / Mathematical modeling and computational simulation of the presence of toxic impactant materials in cases of populational dynamics with inter-and intra-specific competitionSalvatierra, Marcos Marreiro 15 December 2005 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-05T12:58:22Z (GMT). No. of bitstreams: 1
Salvatierra_MarcosMarreiro_M.pdf: 1600898 bytes, checksum: a8beabb556b24c734508735602125989 (MD5)
Previous issue date: 2005 / Resumo: A proposta deste trabalho é criar um modelo para descrever computacionalmente o convívio entre duas espécies competidoras com características de migração na presença de um material impactante tóxico. As equações a serem utilizadas deverão incluir os fenômenos de dispersão populacional, processos migratórios, dinâmicas populacionais densidade-dependentes e efeitos tóxicos de um material impactante evoluindo no meio, provocando um decaimento proporcional. Recorrendo a um instrumental consagrado, embora com desenvolvimento relativamente recente, será usado um sistema clássico do tipo Lotka-Volterra (conseqüentemente não-linear) combinado a Equações Diferenciais Parciais de Dispersão-Migração. O primeiro passo é a formulação variacional discretizada deste sistema visando o uso de Elementos Finitos combinados a um método de Crank-Nicolson. Em segundo lugar, virá a formulação de um algoritmo (conjuntamente com sua programação em ambiente MATLAB) que aproxima as soluções discretas relativas a cada população em cada ponto e ao longo do intervalo de tempo considerado nas simulações. Por fim, serão obtidas saídas gráficas úteis dos pontos de vista quantitativo e qualitativo para uso em conjunto com especialistas de áreas de ecologia e meio ambiente na avaliação e na calibração de modelos e programas, bem como no estudo de estratégias de preservação, impacto e recuperação de ambientes / Abstract: The purpose of this work is to create a model to computationally describe the coexistence of two competing species with migration features in the presence of a toxic impactant material. The equations must include the phenomena of populational dispersion, migratory processes, density-dependent populational dynamics and toxic effects of the evolutive presence of an impactant material developing in the environment, generating a proportional decrease in both populations. Resorting to well-established, although relatively recent, mathematical instruments a Lotka - Volterra type (and consequently nonlinear) system, including characteristics of a Migration-Dispersion PDE. The first step is the discrete variational formulation of this system aiming for the use of the Finite Element Method toghether with a Crank-Nicolson Method. Second, the formulation of an algorithm (together with a programme in MATLAB environment) that approximates the relative discrete solutions to each population in each point and along of the time interval considered in the simulations. Lastly, useful graphics will be obtained of the quantitative and qualitative viewpoints for use with specialists of the fields of ecology and environment and in the evaluation and calibration of models and programmes / Mestrado / Mestre em Matemática Aplicada
|
215 |
Existencia de soluções, regularidade e controle em modelos de campos de fase para solidificaçãoCalsavara, Bianca Morelli Rodolfo, 1978- 14 June 2006 (has links)
Orientador: Jose Luiz Boldrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T13:01:22Z (GMT). No. of bitstreams: 1
Calsavara_BiancaMorelliRodolfo_D.pdf: 3864380 bytes, checksum: 70fdcd983958ae1841bf7f8946627c47 (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho estudamos dois modelos envolvendo funções campo de fase para solidificação de ligas. O primeiro modelo discutido é um sistema envolvendo duas funções campo de fase e o segundo é um sistema envolvendo três funções campo de fase. Aqui são discutidas existência, regularidade, estabilidade em relação aos dados iniciais e termo forçante e unicidade de solução para os sistemas de equações diferenciais parciais não-lineares que representam tais modelos. Também são discutidos vários problemas de controle ótimo envolvendo esses dois modelos de solidificação. Estes problemas consistem em minimizar um funcional de custo utilizando soluções destes sistemas sob certas restrições. São discutidos aqui problemas envolvendo várias restrições distintas, sendo elas tanto no controle quanto no estado. Para cada um destes problemas é verificada a existência de controle ótimo e também é utilizado o formalismo de Dubovitskii e Milyutin para encontrar condições necessárias de otimalidade / Abstract: In this work we study two phase field models for solidification of alloys involving two and three phase field functions. These models are generalization of model treated by Hoffman and Jiang in [9]. In this work we discuss existence, uniqueness, regularity and continuous dependence of solutions of these systems of differential partial equation. We also deal with some optimal contraI problems involving different constraints; for each such problem we discuss existence of an optimal contraI and we use Dubovitskii and Milyutin formalism to obtain necessary conditions for optimality / Doutorado / Doutor em Matemática
|
216 |
Equações diferenciais parabolicas e soluções que se anulam em tempo finito / Differential equations of parabolic type and solutions quenching in finite timeOttoboni, Rafael Rodrigo, 1983- 03 February 2007 (has links)
Orientador: Marcelo da Silva Montenegro / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T06:27:08Z (GMT). No. of bitstreams: 1
Ottoboni_RafaelRodrigo_M.pdf: 900733 bytes, checksum: ddb6b509b4ec4392f5b2145085b216b5 (MD5)
Previous issue date: 2007 / Resumo: Por apresentar basicamente fórmulas, o resumo na íntegra, poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic digital thesis or dissertations / Mestrado / Mestre em Matemática
|
217 |
Existencia e concentração de soluções para equações de Schrodinger quase-lineares / Existence and concentration of solutions for quasilinear Schrodinger equationsMoraes, Elisandra de Fátima Gloss de 03 September 2010 (has links)
Orientadores: João Marcos Bezerra do O, Djairo Guedes de Figueiredo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-15T15:20:37Z (GMT). No. of bitstreams: 1
Moraes_ElisandradeFatimaGlossde_D.pdf: 1261630 bytes, checksum: 516f800553b6eff1f3462fe4be134e8a (MD5)
Previous issue date: 2010 / Resumo: Neste trabalho, estudamos questões relacionadas com existência e concentração de soluções positivas para algumas classes de problemas elípticos quase-lineares. Na obtenção de nossos resultados usamos um método variacional que permite estudar soluções do tipo "singlepeak" e "multiple-peak" para uma classe bem geral de não linearidades que não satisfazem necessariamente a condição clássica de Ambrosetti-Rabinowitz bem como nenhuma hipótese de monotonicidade. Problemas deste tipo aparecem em vários modelos da física e biologia, onde a presença de pequenos parâmetros de difusão ocorre naturalmente. Na Física de Plasmas, por exemplo, surgem no estudo de ondas estacionárias para certas classes de problemas envolvendo equações de Schrödinger quase-lineares / Abstract: In this work we study questions related with existence and concentration of positive solutions for some classes of quasilinear elliptic problems. To obtain our results we use a variational method that allows us to study solutions of the "single-peak" and "multiple-peak" type for a more general class of nonlinearities which do not satisfy necessarily the Ambrosetti-Rabinowitz condition and monotonicity hypothesis. Problems of this type appear in several models of physics and biology where the presence of small parameters of difusion occurs naturally. In plasma physics for example, they arise in the study of stationary waves for certain classes of quasilinear Schrödinger equations / Doutorado / Analise / Doutor em Matemática
|
218 |
"Métodos numéricos para leis de conservação" / Numerical Methods for Conservation LawsDébora de Jesus Bezerra 10 December 2003 (has links)
O objetivo deste projeto é o estudo de técnicas numéricas robustas para aproximação da solução de leis de conservação hiperbólicas escalares unidimensionais e bidimensionais e de sistemas de leis de conservação hiperbólicas. Para alcançar tal objetivo, estudamos esquemas conservativos com propriedades especiais, tais como, esquemas upwind, TVD, Godunov, limitante de fluxo e limitante de inclinação. A solução de um sistema de leis de conservação pode exibir descontinuidades do tipo choque, rarefação ou de contato. Assim, o desenvolvimento de técnicas numéricas capazes de reproduzir e tratar esses comportamentos é desejável. Além de representar corretamente a descontinuidade os esquemas numéricos têm ainda uma tarefa mais árdua; aquela de escolher a solução singular correta, a chamada solução entrópica. Os métodos de Godunov, limitantes de fluxo e limitantes de inclinação são técnicas numéricas que possuem as características apropriadas para aproximar a solução entrópica de uma lei de conservação. / The aim of this work is the study of robust numerical techniques for approximating the solution of scalar and systems of hyperbolic conservation laws. To achieve this, we studied conservative schemes with special properties, such as, schemes upwind, TVD, Godunov, flux limiters and slope limiters. The solution of a system of conservation laws can present discontinuities, like shocks, rarefaction or contact. Therefore, the development of numerical techniques capable of reproducing such featurs are highly desirable. Furthermore, besides resolving singularities, it is required that the numerical method chooses the correct weak solution, that is, the entropic solution. Godunov, flux limiters and slope limiters are techniques that show the appropriate behaviour when applied to conservation laws.
|
219 |
Regularidade analítica para estruturas de coposto um / Analytic regularity for structures of corank oneÉrik Fernando de Amorim 25 February 2014 (has links)
Neste trabalho consideramos sistemas de equações diferenciais parciais lineares de primeira ordem, com coeficientes analíticos, definidos em variedades analíticas reais, no caso particular em que seu coposto é igual a um. Demonstramos que esse tipo de sistema admite integrais primeiras locais, e buscamos caracterizar sua hipoelipticidade analítica local e global em termos de propriedades topológicas das mesmas. Também provamos a Fórmula de Aproximação de Baouendi-Trèves / In this work we consider systems of first-order linear partial differential equations, with analytic coefficients, defined on real-analytic manifolds, in the special case in which the corank is equal to one. We prove that this type of systems admits local first integrals, and we seek to characterize their local and global analytic hypoellipticity in terms of topological properties of these first integrals. We also prove the Baouendi-Trèves Approximation Formula
|
220 |
Uma fórmula de Itô-Ventzell para caminhos Hölder / An Itô-Ventzell type formula for Hölder pathsCastrequini, Rafael Andretto, 1984- 26 August 2018 (has links)
Orientador: Pedro José Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:18:47Z (GMT). No. of bitstreams: 1
Castrequini_RafaelAndretto_D.pdf: 917541 bytes, checksum: c03f74c254be62fceaa032d8a3fd40ec (MD5)
Previous issue date: 2014 / Resumo: Provaremos uma fórmula do tipo Itô-Ventzel para caminhos Hölder cujo expoente é maior que 1/3. Os exemplos fundamentais de caminhos onde a fórmula é válida é o movimento Browniano fracionário. Nossa fórmula estende (e coincide) a versão clássica feita por H. Kunita na década de 80. As ferramentas utilizadas residem no contexto dos rough paths seguindo a abordagem de M. Gubinelli. Tais tecnicas começaram a serem desenvolvidas por T. Lyons no final de 90. Como aplicação, estudaremos equações diferenciais dirigidas por caminhos cujo expoente é maior que 1/2 (Sistemas de Young). Onde a idéia aqui é empregar nossa fórmula aplicando o método das caracteristicas nesse contexto, seguindo novamente os trabalhos de H. Kunita / Abstract: We prove an Itô-Ventezel type formula for Hölder paths with exponent is greater than 1/3. The most important class of examples of theses paths is given by fractional Brownian motion. Our formula is an extension (and agree) to classic version done by H. Kunita in 80's. The technical tools used rely on rough path theory following M. Gubinelli's approach. Those techniques were developed in the late 90's. by T. Lyons. As an application, we study differential equations driven by paths with exponent greater than 1/2 (Young Systems). The ideia here is to employ our formula together with method of characteristics in this setting, following Kunita's work / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.1199 seconds