Spelling suggestions: "subject:"1article size."" "subject:"1article vize.""
361 |
Particle Measurements Using Fluctuations in the Regular Transmittance of Light Through a Particle Dispersion : Concentration and Particles size - Theory, Measurement Principles and Applications for Pulp and Paper ProductionRydefalk, Staffan January 2009 (has links)
The regular transmittance of light or similar radiation through a flowing suspension of particles fluctuates because of the random occurrence of particles in the beam.In the work presented here, a theory for this fluctuating behaviour with the emphasison dispersions of mm-length slender cylindrical particles having circular crosssections is given. The particles in question are wood pulp fibres, which as a first approximation are considered to have a cylinder shape. Four possible measurementprinciples are described theoretically and experimentally. The four principles are for the measurement of concentration, length distribution characterized as lengthclasses, mean length, and mean width. The usefulness in industrial process monitoring of two of these principles is exemplified with pulp measurements. In order to estimate model errors, numerical simulations were used. Although other techniques such as image analysis may compete, the technique presented here is attractive because of the simplicity of the measurement device used. / QC 20100806
|
362 |
Optimization Of Macrostructure In Aluminium FoamsTan, Serdar 01 September 2003 (has links) (PDF)
Pure aluminium and aluminium-5wt % TiO2 aluminium foams were produced by powder metallurgy technique with the use of TiH2 as foaming agent. Two sizes of TiH2 were used: 20µ / m and 3µ / m.
It has been confirmed that high level of compaction is the primary requirement in foaming. It was shown that hot swaging could be used as a method of compaction for foaming as it leads to values close to full density. Pure aluminium foamed at 675° / C and 725° / C leads to a volume expansion between 90-180 %.
A model was developed for pure aluminium to explain the pore initiation and the resultant pore size. The model predicts a critical particle size for TiH2 below which bubbles could not form. The size appears to be in the neighborhood of 30µ / m for 675° / C and 6µ / m for 725° / C and is temperature dependent. Equilibrium pore size appears to be a function of TiH2 particle size and not affected significantly by the temperature of foaming. It has also been shown that depth effect, i.e. hydrostatic pressure of liquid metal, is unimportant in foaming process and can be neglected. According to the model, to produce pores of fine sizes, two requirements must be met: use of fine foaming agent and the use of high foaming temperature.
Al-5 wt % TiO2 was foamed at 750° / C and 800° / C, i.e. at temperatures that yield viscosities similar to pure aluminium. The structure of foamed metal and level of foaming, 120-160%, was similar to pure aluminium. Unlike pure aluminium, internal reactions are dominant feature of TiO2 stabilized systems. Solid content of the system increases as a result of internal reactions between Al-Ti and Al- TiO2. When this change occurs, however, is not known. It is possible that the viscosity of the system may be four times of its original value.
|
363 |
Untersuchungen zur Papierleimung mit Alkenylbernsteinsäureanhydrid (ASA) / Investigations on Paper Sizing with Alkenyl Succinic Anhydride (ASA)Martorana, Emanuele 02 August 2012 (has links) (PDF)
Ziel dieser Arbeit war es, die mechanistischen Abläufe bei der Papierleimung mit ASA besser zu verstehen und weiter aufzuklären, um vor allem Wechselwirkungen mit Füllstoffen und anderen chemischen Additiven zu minimieren. Dazu sollten analytische Verfahrensmethoden entwickelt werden, welche die bilanztechnische Verfolgung von ASA und dessen Reaktionsprodukten ermöglichen, um anschließend den Einfluss und die Wechselwirkungen verschiedenster Parameter auf die ASA-Leimung untersuchen zu können. Weiterhin sollte bei Untersuchungen zur Emulgierung versucht werden, die wichtigsten Einflussgrößen auf die Partikelgröße, Stabilität und Hydrolyse des ASA aufzuzeigen.
Im ersten Teil der Arbeit konnten bei den Untersuchungen zur Emulgierung wichtige Einflussgrößen auf die Partikelgröße, Stabilität und Hydrolyse von ASA-Emulsionen aufgeklärt werden. Weiterhin wurde eine Methode zur genauen Bestimmung der Reaktionskinetik der ASA-Hydrolyse sowie der Ablagerungsneigung entwickelt.
Bei den Untersuchungen zur analytischen Bestimmung wurde über die NIR-Spektroskopie ein einfaches Analyseverfahren zur exakten quantitativen Bestimmung von ASA und AKD entwickelt. Es wurde gefunden, dass eine quantitative Erfassung von synthetischen Leimungsmitteln (ASA / AKD) mittels NIR in den Regionen der CH2-Schwingungen um 4300 cm-1 und 5750 cm-1 mit hoher statistischer Genauigkeit möglich ist. Der Methodenfehler für die Bestimmung von AKD liegt bei ± 0,010 % und bei ± 0,013 % für ASA. Dadurch ist eine wesentlich genauere Bewertung von Wechselwirkungen bei der Leimung als bisher möglich, da nicht nur die Leimungswirkung, sondern über NIR auch Menge und Art (gebunden / ungebunden) an Leimungsmittel in einer bisher nicht erreichbaren Messzeit betrachtet werden können. Mittels HPLC und Pyrolyse-GC/MS konnten die erstellten NIR-Kalibrationen erfolgreich validiert werden.
Im letzten Teil der Arbeit wurden Wechselwirkungen von ASA mit Füllstoffen und chemischen Additiven aufgeklärt, sowie mechanistische Grundlagen zur Leimung mit ASA erarbeitet. Hier hat sich gezeigt, dass der Mechanismus der ASA-Leimung nicht nur, wie oft in der Literatur beschrieben, auf eine Veresterung mit den Hydroxylgruppen der Cellulose zurückzuführen ist. Vielmehr ist die optimale Wirkung von Leimungsmitteln sehr stark von deren Verteilung, Mobilität und Orientierung abhängig. Weiterhin konnte festgestellt werden, dass der größte Anteil des Leimungsmittels im Papier in ungebundener (hydrolisierter) Form vorliegt und somit zur Wanderung (Migration) durch das Papiergefüge befähigt ist. Trotzdem kann der hydrolisierte Anteil deutlich zur Hydrophobierung des Papiers beitragen, wenn dieser richtig orientiert und fein verteilt ist. Schlecht orientierte Leimungsmittel tragen nicht zur Leimung bei bzw. können diese sogar reduzieren.
In der vorliegenden Arbeit wurden unter Einsatz moderner Methoden wichtige Grundlagen zur Papierleimung mit ASA erarbeitet. Dabei wurden insbesondere Beiträge zu den Themen Emulgierung, Hydrolyse- und Ablagerungsneigung, analytische Bestimmung, Wechselwirkungen sowie Mechanismen von ASA geleistet. Diese Ergebnisse zeigen Möglichkeiten auf, wie in Unternehmen der Papierindustrie zukünftig ASA-Leimungsmittel gezielter dosiert, Produktionsstörungen vermieden und Kosten reduziert werden können. / The purpose of this work was to develop a deeper understanding of the mechanisms in ASA sizing and to minimise interactions with fillers and other chemical additives. Therefore analytical test methods were developed, to enable a simple mass balance approach for ASA and its reaction products. Afterwards, the influence of various factors affecting ASA sizing and retention could be investigated and explained. Furthermore, the most important factors which influence particle size, stability, and hydrolysis of ASA emulsions had to be determined.
In the first part of this work, studies regarding the emulsification of ASA were carried out. Here, the most important factors with regard to particle size, stability, and hydrolysis of ASA emulsions were investigated. Furthermore, a method for the exact determination of ASA hydrolysis as well as the agglomeration tendency was developed.
For the investigations regarding the analytical determination, a fast and easy-to-use method for the quantification of ASA and AKD has been developed. The investigations have shown that a quantitative determination of synthetic sizing agents (ASA / AKD) is possible using NIR spectroscopy. With the help of multivariate data analysis and PLS regression, mainly the region of the CH2-bands around 4300 cm-1 and 5750 cm-1 were evaluated. The prediction error (RMSEP) for the determination of AKD is 0.01 %, and 0.013 % for ASA. Even an analysis of the percentage of bound and unbound ASA / AKD is possible by NIR spectroscopy of extracted paper samples. Thus, a fast and detailed investigation of mechanisms as regards sizing is possible. The developed NIR methods were validated using HPLC and Pyrolysis-GC/MS.
In the last part of the work, interactions of ASA with fillers and chemical additives were investigated, and mechanisms of ASA sizing were studied. It was shown that the mechanism of ASA sizing - as often described in the literature - can not only be attributed to the esterification with the hydroxyl groups of the cellulose. In fact, the optimal effect of sizing agents is much more dependant on a fine distribution, mobility and orientation of ASA molecules. It was observed that the main part of the ASA is present in an unbound (hydrolysed) form and therefore is able to migrate through the paper structure. However, the hydrolysed ASA can significantly contribute to sizing when it is finely distributed and well orientated. Sizing agents orientated in the opposite do not contribute to sizing but they can even decrease the existing sizing level.
To summarize, it can be concluded that, in this work important fundamentals as regards ASA sizing were developed using modern test methods. Thereby important contributions were made to the topics of emulsification, hydrolysis- and emulsion-stability, analytical determination, interactions and mechanisms of ASA. These results show possibilities how ASA sizing agents can be used more effectively, process disturbances avoided, and costs reduced.
|
364 |
Microbial Activity in Sediments: Effects on Soil BehaviorRebata-Landa, Veronica 23 August 2007 (has links)
Microorganisms have played a critical role in geological processes and in the formation of soils throughout geological time. It is hypothesized that biological activity can also affect soil properties in short engineering time-scales. Bioactivity in sediments is determined by the classical limiting factors (i.e., nutrients, water, C for biomass, temperature and pH) as well as by pore-size geometrical limits and mechanical interactions between bacterial cells and soil particles. These constraints restrict the range of grain size and burial depth where biomediated geochemical processes can be expected in sediments, affect the interpretation of geological processes and the development of engineering solutions such as bioremediation. When biological, geometrical and mechanical limiting factors are satisfied, bioactivity can be designed to alter the mechanical properties of a soil mass, including lowering the bulk stiffness of the pore fluid through controlled gas bio-generation, increasing the shear stiffness of the soil skeleton by biomineralization, and reducing hydraulic conduction through biofilm formation and clogging. Each of these processes can be analyzed to capture the bio-chemo-hydro-mechanical coupling effects, in order to identify the governing equations that can be used for process design. Design must recognize the implications of spatial variability, reversibility and environmental impacts.
|
365 |
Analysis of dense colloidal dispersions with multiwavelength frequency domain photon migration measurementsDali, Sarabjyot Singh 02 June 2009 (has links)
Frequency domain photon migration (FDPM) measurements are used to study
the properties of dense colloidal dispersions with hard sphere and electrostatic interactions,
which are otherwise difficult to analyze due to multiple scattering effects.
Hard sphere interactions were studied using a theoretical model based upon a
polydisperse mixture of particles using the hard sphere Percus Yevick theory. The
particle size distribution and volume fraction were recovered by solving a non linear
inverse problem using genetic algorithms. The mean sizes of the particles of 144
and 223 nm diameter were recovered within an error range of 0-15.53% of the mean
diameters determined from dynamic light scattering measurements. The volume fraction
was recovered within an error range of 0-24% of the experimentally determined
volume fractions.
At ionic strengths varying between 0.5 and 4 mM, multiple wavelength (660, 685,
785 and 828 nm) FDPM measurements of isotropic scattering coefficients were made
of 144 and 223 nm diameter, monodisperse dispersions varying between 15% - 22%
volume fraction, as well as of bidisperse mixtures of 144 and 223 nm diameter latex
particles in 1:3, 1:1 and 3:1 mixtures varying between volume fractions of 15% - 24%.
Structure factor models with Yukawa potential were computed by Monte Carlo (MC)
simulations and numerical solution of the coupled Ornstein Zernike equations.
In monodisperse dispersions of particle diameter 144 nm the isotropic scattering coefficient versus ionic strength show an increase with increasing ionic strength consistent
with model predictions, whereas there was a reversal of trends and fluctuations
for the particle diameter of 223 nm.
In bidisperse mixtures for the case of maximum number of smaller particles,
the isotropic scattering coefficient increased with increasing ionic strength and the
trends were in conformity with MC simulations of binary Yukawa potential models.
As the number of larger diameter particles increased in the dispersions, the isotropic
scattering coefficients depicted fluctuations, and no match was found between the
models and measurements for a number ratio of 1:3.
The research lays the foundation for the determination of particle size distribution,
volume fractions and an estimate of effective charge for high density of particles.
|
366 |
Effects Of Separate And Intergrinding On Some Properties Of Portland Composite CementsSoyluoglu, Serdar 01 January 2010 (has links) (PDF)
In the production of cement, to increase the cement/clinker ratio and decrease CO2 emission, the most important alternative is to produce mineral admixture incorporated cements (CEM II-III-IV-V) instead of portland cement
(CEM I). These cements are usually produced by intergrinding the portland cement clinker and the mineral admixtures. However, the difference between grindabilities of the different components of such cements may cause significant effects on the particle size distribution and many other properties.
For this reason, separate grinding of additives and clinker may be thought as an alternative. In this study, the effects of intergrinding and separate grinding on the particle size distribution and consequently on the strength of portland
composite cements which contained natural pozzolan (trass), granulated blast furnace slag (GBFS) and limestone besides portland cement clinker were studied.
|
367 |
Synthesis And Characterization Of Ethanol Electro-oxidation CatalysisDemir-kivrak, Hilal 01 October 2010 (has links) (PDF)
ABSTRACT
SYNTHESIS AND CHARACTERIZATION OF ETHANOL ELECTRO-OXIDATION CATALYSIS
Demir-Kivrak, Hilal
Ph.D., Department of Chemical Engineering
Supervisor : Prof. Dr. Deniz Ü / ner
Co-supervisor : Dr. Sadig Kuliyev
October 2010, 196 pages
In this study, the role of defects, the role of Sn in relation to defects, and the role of oxide phase of tin in ethanol electro-oxidation reaction were investigated. Firstly, adsorption calorimetry measurements were conducted on monometallic (1%Pt, 2%Pt, and 5%Pt) and bi-metallic (5% Pt-Sn) &gamma / -Al2O3 supported Pt catalysts. It was observed that while saturation coverage values decreased, intermediate heats remained same for Pt-Sn catalysts by the increasing amount of tin. The effect of particle size was investigated on Pt/C (pH=5), Pt/C (pH=11) catalysts at different scan rates. At high scan rates (quite above diffusion limitations), current per site activities were nearly the same for 20% Pt/C (E-Tek), Pt/C (pH=11), and Pt/C (pH=5) catalysts, which explained as electro-oxidation reaction takes place at the defects sites. Furthermore, the effect of support on ethanol electro-oxidation was investigated on CNT supported Pt catalyst. Results indicate that only the metal
v
dispersions improved ethanol electro-oxidation reaction and support did not have any effect on ethanol electro-oxidation reaction. Results on the 20% Pt-Sn/C (15:1 to 1:1 Pt: Sn atomic ratios) and 20% Pt-SnO2/C (6:1 and 1:1) catalysts indicated that ethanol electro-oxidation activity increased by increasing tin amount. For 20% Pt-Sn/C catalysts, Pt-Sn (6:1)/C indicated best activity. On the other hand, 20% Pt-SnO2 (6:1)/C catalyst was better than Pt-Sn (6:1)/C in terms of ethanol electro-oxidation activity due to the fact that there was low contact between Pt and tin oxide particles.
|
368 |
Geomaterial gradation influences on interface shear behaviorFuggle, Andrew Richard 04 April 2011 (has links)
Particulate materials are ubiquitous in the natural environment and have served throughout human history as one of the basic materials for developing civilizations. In terms of human activity, the handling of particulate materials consumes approximately 10% of all the energy produced on earth. Advances in the study and understanding of particulate materials can thus be expected to have a major impact on society.
Geotechnical engineers have a long history of studying particulate materials since the fundamental building blocks of the profession include sands, silts, clays, gravels and ores, all of which are in one form or another particulates. The interface between particulates and other engineered materials is very important in determining the overall behavior of many geotechnical systems. Laboratory experimental studies into interface shear behavior has until now, been largely confined to systems involving uniformly graded sands comprised of a single particle size.
This study addresses these potential shortcomings by investigating the behavior of binary particle mixtures in contact with surfaces. The binary nature of the mixtures gives rise to a changing fabric state which in turn can affect the shear strength of the mixture. Accordingly, packing limit states and the shear strength of binary mixtures were investigated across a range of mixtures, varying in particle size ratio and the proportion of fine particles to provide a reference.
Binary mixtures in contact with smooth surfaces were investigated from both a global shear response and a contact mechanics perspective. A model was developed that allowed for the prediction of an interface friction coefficient based on fundamental material properties, particle and mixture parameters. Surface roughness changes as a result of shearing were also examined.
The interface shear behavior with rough interfaces was examined in the context of the relative roughness between particles and surface features. The interpretation of traditional measures of relative roughness suffer from the need for a definitive average particle size, which is ambiguous in the case of non-uniform mixtures. Measures of an applicable average particle size for binary mixtures were evaluated.
|
369 |
Performance verification of personal aerosol sampling devices [electronic resource] / by Steven T. Luecke.Luecke, Steven T. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 48 pages. / Thesis (M.S.P.H.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: International standards establish criteria for size-selective aerosol sampling for industrial hygiene. Commercially available aerosol samplers are designed to conform to these criteria. This study uses semi-monodispersed aerosols generated in a vertically aligned test chamber to compare the performance of three commercially available respirable dust samplers, one of which can, in addition, simultaneously sample for thoracic and inhalable dust fractions. Comparison methods are used to calculate a theoretical fractional value based on the appropriate sampling conventions of the total dust concentration and size distribution of test materials. Performance of actual samplers can be conducted by comparing observed results to the theoretical value. Results show the design of the test chamber and use of fused aluminum oxide is appropriate to conduct simplified performance verification tests for inhalable and respirable dust samplers. / ABSTRACT: This study showed the TSI RespiCon followed the inhalable and respirable conventions closely, but results for the thoracic fraction required the use of a correction factor. The SKC aluminum cyclone tended to undersample the respirable fraction, while the BGI CAS4 cyclone and the TSI RespiCon appear to most closely follow the convention. Improved selection of test material and characterization of particle sizes are recommended to further develop this method of performance verification. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
|
370 |
Analysis of a database of uniaxial geogrid pullout resistance resultsHutcherson, Shawn Curtis 26 April 2013 (has links)
Being able to extrapolate interaction values from a database of pullout resistance testing results may possibly help with narrowing down the most suitable reinforcement/fill material combinations for a Mechanically Stabilized Earth wall, thereby reducing the number of tests needed for a design and maximizing the efficiency of the system.
The objectives of this thesis include the following: collect and organize a broad collection of data in a way that can assist in preliminary selection of interaction properties for uniaxial geogrids; analyze the collection of data for trends related to geogrid polymer type; analyze the collection of data for trends related to the presence of fines in the fill material; compare the collected data to previous studies on the effects of geogrid specimen length on pullout performance; and compare the collected data to previous studies on the effect of geogrid rib thickness to mean particle size ratio on normalized bearing stress and CI values.
The data from 101 pullout tests are presented in tabular and graphic form so that the coefficient of interaction may be interpolated for many geogrid/fill material combinations. The effect of polymer type (PET vs HDPE) was shown to have little effect on how a geogrid performs in a fill material. In one case, the two polymer types exhibit differing trends within the same fill material. The presence of fines (>12% by weight) in the fill material results in a significant decrease in the coefficient of interaction when compared to clean granular fills. The effects of geogrid embedment length have significant effects on the results of geogrid pullout tests. Samples with shorter lengths were shown to carry a greater load per unit area than longer samples. Normalized bearing stress is shown to be heavily influenced by the geogrid transverse rib thickness to mean particle size ratio (B/D50). For a particular fill material, normalized bearing stress decreases linearly with increasing B/D50. For a particular geogrid, normalized bearing stress is shown to have a bi-linear behavior with increasing B/D50. Initially, normalized bearing stress increases with increasing B/D50. After reaching a peak, normalized bearing stress begins to decrease with increasing B/D50. / text
|
Page generated in 0.1355 seconds