• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 160
  • 41
  • 29
  • 19
  • 11
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 385
  • 385
  • 385
  • 118
  • 115
  • 100
  • 100
  • 75
  • 70
  • 52
  • 42
  • 36
  • 35
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Zeitaufgelöste PIV-Untersuchungen zur Strömungskontrolle mittels elektromagnetischer Kräfte in schwach leitfähigen Fluiden

Cierpka, Christian 23 April 2009 (has links) (PDF)
Die vorwiegend experimentelle Arbeit befasst sich mit der systematischen Untersuchung von Parametervariationen bei der aktiven Strömungskontrolle mit elektromagnetischen Kräften. An einer angestellten Platte und einem NACA0015-Profil wurde die saugseitige abgelöste Strömung durch das Einbringen einer periodischen wandparallelen Lorentzkraft an der Vorderkante beeinflusst und experimentell mittels zeitaufgelöster Particle Image Velocimetry (PIV) untersucht. Dabei wurde für verschiedene Anstellwinkel und Reynoldszahlen die Frequenz der Anregung, deren Impulseintrag und der zeitliche Kraftverlauf variiert. Strömungsmechanische Untersuchungen experimenteller und numerischer Natur wurden für eine elektrochemische Zelle und den Fall der Elektrolyse an Millieelektroden unter dem Einfluss externer Magnetfelder durchgeführt. Die Übereinstimmung der gemessenen und berechneten Geschwindigkeitsfelder war dabei sehr gut. Entgegen der Annahme, dass im Falle homogener Magnetfelder keine Strömungen induziert werden, konnte nachgewiesen werden, dass durch die lokale Krümmung der elektrischen Feldlinien in Elektrodennähe starke Lorentzkräfte generiert werden. Dies führt zu sehr komplexen Primär-und Sekundärströmungen. Die gleichen Effekte bewirken ebenfalls in der Nähe von Millieelektroden starke Lorentzkräfte in homogenen magnetischen Feldern. Die experimentellen Beobachtungen an Millieelektroden von Leventis et. al (2005), welche zum Beweis der Konzentrationsgradientenkraft herangezogen wurden, konnten alle auf das Wirken lokaler Lorentzkräfte zurückgeführt werden. Der experimentelle Nachweis der Konzentrationsgradientenkraft steht damit weiterhin aus. Zur Messung der Konzentrationen in elektrochemischen Systemen wurde erstmals das Hintergrundschlierenverfahren angewendet. Dieses Verfahren erlaubt die Bestimmung der räumlichen Konzentrationsgradienten mit erheblich weniger messtechnischen Aufwand gegenüber spektroskopischen Methoden und der Schlierentechnik.
342

Combined PIV/PLIF measurements in a high-swirl fuel injector flowfield

Cheng, Liangta January 2013 (has links)
Current lean-premixed fuel injector designs have shown great potential in terms of reducing emissions of pollutants, but such designs are susceptible to combustion instabilities in which aerodynamic instability plays a major role and also has an effect on mixing of air and fuel. In comparison to prototype testing with combustors running in operating conditions, computational approaches such as Large Eddy Simulations (LES) offer a much more cost-effective alternative in the design stage. However, computational models employed by LES require validation by experimental data. This is one of the main motivations behind the present experimental study. Combined particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) instrumentation allowed simultaneous measurements of velocity vector and a conserved scalar introduced into the fuel stream. The results show that the inner swirl shear layer features two pairs of vortices, which draw high concentration fuel mixture from the central jet into the swirl stream and causes it to rotate in their wakes. Such periodic entrainment also occurs with the characteristic frequencies of the vortices. This has clear implications for temporal variations in fuel/air ratio in a combusting flow; these bursts of mixing, and hence heat release, could be a possible cause of mixing-induced pressure oscillation in combusting tests. For the first time in such a flow, all 3 components of the turbulent scalar flux were available for validation of LES-based predictions. A careful assessment of experimental errors, particularly the error associated with spatial filtering, was carried out. Comparison of LES predictions with experimental data showed very good agreement for both 1st and 2nd moment statistics, as well as spectra and scalar pdfs. It is particularly noteworthy that comparison between LES computed and measured scalar fluxes was very good; this represents successful validation of the simple (constant Schmidt number) SGS model used for this complex and practically important fuel injector flow. In addition to providing benchmark data for the validation of LES predictions, a new experimental technique has been developed that is capable of providing spatially resolved residence time data. Residence times of combustors have commonly been used to help understand NOx emissions and can also contribute to combustion instabilities. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved PLIF technique, but a second camera for PIV was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this is equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NOx production. The technique is described here for a single-phase isothermal flow field, but with consideration, it could be extended to studying reacting flows to provide more insight into important mixing phenomena and relevant timescales.
343

Étude expérimentale de la réduction de traînée par injection de bulles

Ndongo Fokoua, Georges 17 December 2013 (has links) (PDF)
Cette thèse porte sur l'étude expérimentale de la réduction de traînée par injection de bulles. Le contexte de l'étude est lié à la propulsion navale. Les bulles peuvent, lorsqu'elles sont injectées dans la couche limite en développement le long des carènes de navires, contribuer à réduire significativement la résistance de frottement, en allégeant d'une part le fluide le long de la coque et d'autre part en interagissant avec les structures turbulentes de proche paroi. La configuration expérimentale retenue pour cette étude est l'écoulement de Taylor-Couette, avec cylindre extérieur fixe et injection de bulles calibrées. Nos investigations portent sur les régimes de transition, de turbulence naissante et turbulent avec persistance des cellules de Taylor (Re=20000). La taille des bulles varie avec le capillaire et le mélange utilisés, entre 0,05 et 0,12 fois la largeur de l'entrefer. Une méthode originale de suivi de la phase dispersée dans un plan méridien, couplée à des mesures de couple global appliqué au cylindre intérieur ont permis de mettre en évidence deux régimes de réduction de traînée et plusieurs types d'arrangements des bulles, en fonction de leur taille et du nombre de Reynolds. Les bulles peuvent avoir une trajectoire glissante, oscillante, être capturées par les cellules de Taylor ou en proche paroi du cylindre intérieur dans les zones de jets sortants. La caractérisation par PIV des vitesses de la phase liquide en monophasique et diphasique a permis d'étudier les modifications induites par les bulles sur la phase liquide et de discuter des mécanismes impliqués dans la modification du couple global par la présence des bulles. Il ressort de cette étude que pour les nombres de Reynolds en deçà de la capture, les bulles contribuent à stabiliser l'écoulement en accord avec une réduction du couple visqueux pouvant atteindre -30% pour des taux de vide très faible (< 1%). Pour des nombres de Reynolds plus élevés, la capture dans les cellules conduit à une réduction de la longueur d'onde axiale et une augmentation de la vorticité des cellules, associée à une augmentation des vitesses rms. Cette configuration est favorable à une augmentation du couple visqueux. A l'inverse, la capture des bulles dans le jet sortant conduit à une augmentation de la longueur d'onde axiale, associée à une diminution de la vorticité. Cette configuration est favorable à une réduction du couple visqueux, moins marquée qu'en absence de capture.
344

Near-Field Study of Multiple Interacting Jets : Confluent Jets

Ghahremanian, Shahriar January 2015 (has links)
This thesis deals with the near-field of confluent jets, which can be of interest in many engineering applications such as design of a ventilation supply device. The physical effect of interaction between multiple closely spaced jets is studied using experimental and numerical methods. The primary aim of this study is to explore a better understanding of flow and turbulence behavior of multiple interacting jets. The main goal is to gain an insight into the confluence of jets occurring in the near-field of multiple interacting jets. The array of multiple interacting jets is studied when they are placed on a flat and a curved surface. To obtain the boundary conditions at the nozzle exits of the confluent jets on a curved surface, the results of numerical prediction of a cylindrical air supply device using two turbulence models (realizable 𝑘 − 𝜖 and Reynolds stress model) are validated with hot-wire anemometry (HWA) near different nozzles discharge in the array. A single round jet is then studied to find the appropriate turbulence models for the prediction of the three-dimensional flow field and to gain an understanding of the effect of the boundary conditions predicted at the nozzle inlet. In comparison with HWA measurements, the turbulence models with low Reynolds correction (𝑘 − 𝜖 and shear stress transport [SST] 𝑘 − 𝜔) give reasonable flow predictions for the single round jet with the prescribed inlet boundary conditions, while the transition models (𝑘 − 𝑘l − 𝜔𝜔 and transition SST 𝑘 − 𝜔) are unable to predict the flow in the turbulent region. The results of numerical prediction (low Reynolds SST 𝑘 − 𝜔 model) using the prescribed inlet boundary conditions agree well with the HWA measurement in the nearfield of confluent jets on a curved surface, except in the merging region. Instantaneous velocity measurements are performed by laser Doppler anemometry (LDA) and particle image velocimetry (PIV) in two different configurations, a single row of parallel coplanar jets and an inline array of jets on a flat surface. The results of LDA and PIV are compared, which exhibit good agreement except near the nozzle exits. The streamwise velocity profile of the jets in the initial region shows a saddle back shape with attenuated turbulence in the core region and two off-centered narrow peaks. When confluent jets issue from an array of closely spaced nozzles, they may converge, merge, and combine after a certain distance downstream of the nozzle edge. The deflection plays a salient role for the multiple interacting jets (except in the single row configuration), where all the jets are converged towards the center of the array. The jet position, such as central, side and corner jets, significantly influences the development features of the jets, such as velocity decay and lateral displacement. The flow field of confluent jets exhibits asymmetrical distributions of Reynolds stresses around the axis of the jets and highly anisotropic turbulence. The velocity decays slower in the combined regio  of confluent jets than a single jet. Using the response surface methodology, the correlations between characteristic points (merging and combined points) and the statistically significant terms of the three design factors (inlet velocity, spacing between the nozzles and diameter of the nozzles) are determined for the single row of coplanar parallel jets. The computational parametric study of the single row configuration shows that spacing has the greatest impact on the near-field characteristics.
345

Characterization of mass transport in the upper human airways

Bauer, Katrin 22 February 2012 (has links) (PDF)
Mechanical ventilation can be a life saving treatment. However, due to the inhomogeneous and anisotropic behavior of the lung tissue, ventilation can also lead to overdistensions of lung regions whereas other areas remain even collapsed. A first step is a more comprehensive understanding of the flow mechanics under normal breathing conditions in a healthy lung as well as for a diseased, collapsed lung. This is the aim of this work. Therefore, a realistic model of the upper human airways has been generated at which experimental and numerical investigations could be carried out. Experimentally, the flow was analyzed by means of Particle Image Velocimetry (PIV) measurements which revealed new details about the flow patterns occurring during different ventilation frequencies. Numerical results were in good agreement with the experimental results and could provide new details about the three-dimensional flow structure and emerging secondary flow within the upper airways. The study of reopening of collapsed airways has shown that larger frequencies lead to airway reopening without overdistension of already open parts. Higher frequencies also lead to homogenization of mass flow distribution within the human lung. / Künstliche Beatmung ist meist eine lebensrettende Maßnahme. Aufgrund der räumlich anisotropen und inhomogenen Eigenschaften der Lunge kann die Beatmung jedoch auch zu einer Schädigung der Lunge führen. Daraus ergibt sich die Forderung einer „Protektiven Beatmung“. Ein erster Schritt dahingehend ist ein verbessertes Verständnis der Atmung und Beatmung am Beispiel der gesunden sowie kranken, teilweise kollabierten Lunge. Dies ist das Ziel der Arbeit. Hierfür wurde ein realistisches Modell der oberen Atemwege (Tracheobronchialbaum) angefertigt. An diesem Modell können sowohl experimentelle als auch numerische Untersuchungen durchgeführt werden. Experimentell wurde die Strömung mittels Particle Image Velocimetry (PIV) untersucht, wobei neue Details bezüglich der auftretenden Strömungsmuster für unterschiedliche Frequenzen gefunden wurden. Numerische Strömungsberechnungen stimmen gut mit den experimentellen Ergebnissen überein. Dreidimensionale Strömungsstrukturen sowie die Entwicklung von Sekundärwirbeln in der Lunge konnten erklärt werden. Eine Studie am kranken, teilweise kollabierten Lungenmodell zeigte, dass mit steigender Frequenz kollabierte Bereiche wiedereröffnet werden können. Höhere Frequenzen führen weiterhin zu einer Homogenisierung der Massenstromverteilung in der Lunge.
346

In Vitro Fluid Dynamics of Stereolithographic Single Ventricle Congenital Heart Defects From In Vivo Magnetic Resonance Imaging

Kitajima, Hiroumi D. 20 July 2007 (has links)
Background: Single ventricle congenital heart defects with cyanotic mixing between systemic and pulmonary circulations afflict 2 per 1000 live births. Following the atriopulmonary connection proposed by Fontan and Baudet in 1971, the present procedure is the total cavopulmonary connection (TCPC), where the superior vena cava (SVC) and inferior vena cava (IVC) are sutured to the left pulmonary artery (LPA) and right pulmonary artery (RPA). However, surgeon preference dictates the implementation of the extra-cardiac and intra-atrial varieties of the TCPC. Overall efficiency and hemodynamic advantage of the competing methodologies have not been determined. Hypothesis: It is hypothesized that an understanding of the experimental fluid dynamic differences between various Fontan surgical methodologies in the TCPC allows for power loss evaluation toward improved surgical planning and design. Methods: Toward such analysis, a previously developed data processing methodology is applied to create an anatomic database of single ventricle patients from in vivo magnetic resonance imaging (MRI) to examine the gamut of TCPC anatomies. From stereolithographic models of representative cases, pressure and flow data are used to quantify control volume power loss to measure overall efficiency. particle image velocimetry (PIV) is employed to detail flow structures in the vasculature. Results are validated with dye injection flow visualization and 3-D phase contrast magnetic resonance imaging (PC-MRI) velocimetry, highlighting flow phenomena that cannot be captured with in vivo MRI due to prohibitively long scanning times. Preliminary results illustrate the variation of control volume power loss over several TCPC anatomies with varying flow conditions, the application of PIV, and validation approaches with 3-D PC-MRI velocimetry. Data from control volume power loss evaluation demonstrate a correlation with TCPC anatomy, providing added clinical knowledge of optimal TCPC design. Findings from PIV and 3-D PC-MRI velocimetry reveal a means for quantitatively comparing flow structure. Dye injection flow visualization offers qualitative insight into limitations of the selected velocimetry techniques.
347

Experimental and numerical study of flow distribution in compact plate heat exchangers / Etude numérique et expérimentale de la distribution de fluide dans un échangeur de chaleur compact à plaques

Galati, Chiara 13 December 2017 (has links)
Ce travail de thèse s’inscrit dans le cadre du programme R&D du CEA en support au système de conversion d’énergie à gaz du prototype industriel de Réacteur à Neutrons Rapides refroidi au Sodium (RNR-Na). Cette technologie représente une alternative aux cycles Rankine conventionnels à eau/vapeur, ayant pour avantage principal l’élimination du scenario accidentel de réaction sodium-eau. Cependant, la faible capacité de transfert de chaleur du gaz nécessite une technologie d’échangeurs compacts à plaques avec un nombre élevé de canaux à alimenter. Coté sodium, une section minimale de passage est nécessaire pour éviter le risque de bouchage par impureté. Cela induit de très faibles pertes de pression dans le faisceau qui, couplées à une condition de vitesse élevée à l’entrée, génèrent un risque réel de mauvaise distribution du débit. Les performances d’échange thermique et la tenue mécanique du composant sont alors dégradées. L’objectif principal de ce travail de thèse a été de résoudre ce problème de mauvaise distribution, en s’appuyant sur une conception innovante (BREVET FR16 57543), sur une stratégie de calcul numérique et l’établissement d’une base de données expérimentale pour la validation des travaux théoriques. Le nouveau système de distribution sodium se compose d’un collecteur d'entrée dont le design permet de guider la trajectoire du jet et d’un système de bifurcation de canaux qui augmente les pertes de pression dans le faisceau. De plus, des communications latérales entre les canaux sodium aident à homogénéiser davantage le flux. Deux installations expérimentales ont été conçues pour caractériser l'écoulement dans les canaux de bifurcation et dans le collecteur d'entrée. La conception des maquettes a permis de quantifier leur effet sur la distribution du flux entre les canaux. La base de données aérodynamiques PIV acquises a permis de valider les modèles numériques et de prouver l’efficacité du système de distribution proposé. Après avoir validé les modèles de turbulence CFD et la stratégie d'étude de la distribution dans le module SGHE, une optimisation de chaque composant du système de distribution de sodium a été réalisée. Le travail de cette thèse s’achève par la description de la conception optimale retenue pour la phase actuelle du projet ASTRID. / This PhD work was motivated by the CEA R&D program to provide solid technological basis for the use of Brayton power conversion system in Sodium-cooled Fast nuclear Reactors (SFRs). Multi-channel compact heat exchangers are necessary for the present application because of the low heat transfer capacity of the gas foreseen. In ASTRID project, a minimum size of Na channels section is required to avoid the plugging risk. However, this induces very low pressure losses in the bundle. Considering an additional inlet flow condition, a real risk of bad flow distribution remains. As a result, the thermal performance and thermal loading of the heat exchanger degrades due to it. The main goal of this work was to overcome the flow maldistribution problem by means of an innovative design of sodium distribution system (PATENT FR1657543), the development of a numerical strategy and the construction of an experimental database to validate all theoretical studies. The innovative sodium distribution system consists on an inlet header which tries to guide the evolution of the impinging jet flow while a system of bifurcating pre-distribution channels increases pressure drops in the bundle. Lateral communications between pre-distribution channels are introduced to further homogenize the flow. Two experimental facilities have been conceived to study the flow behavior in bifurcating channels and in the inlet header, respectively. At the same time, their effect on the flow distribution between channels is evaluated. The acquired PIV aerodynamic database allows to validate the numerical models and to prove the design basis for the proposed distribution system. Once having validated the CFD turbulence models and the strategy to study the flow maldistribution in the SGHE module, a decisive and trustworthy optimization of each component of the sodium distribution system has been performed. Finally, an optimal configuration has been proposed for the actual phase of ASTRID project.
348

Shock Wave-boundary Layer Interaction in Supersonic Flow over Compression Ramp and Forward-Facing Step

Jayaprakash Narayan, M January 2014 (has links) (PDF)
Shock wave-boundary layer interactions (SWBLIs) have been studied ex-tensively due to their practical importance in the design of high speed ve-hicles. These interactions, especially the ones leading to shock induced separation are typically unsteady in nature and can lead to large fluctuating pressure and thermal loads on the structure. The resulting shock oscil-lations are generally composed of high-frequency small-scale oscillations and low-frequency large-scale oscillations, the source of the later being a subject of intense recent debate. Motivated by these debates, we study in the present work, the SWBLI at a compression ramp and on a forward-facing step (FFS) at a Mach number of 2.5. In the case of compression ramps, a few ramp angles are studied ranging from small (10 degree) ramp angle to relatively large values of up to 28 degrees. The FFS configuration, which consists of a 90 degree step of height h, may be thought of as an extreme case of the compression ramp geometry, with the main geometri-cal parameter here being (h/δ), where δis the thickness of the oncoming boundary layer. This configuration is less studied and has some inherent advantages for experimentally studying SWBLI as the size of the separa-tion bubble is large. In the present experimental study, we use high-speed schlieren, unsteady wall pressure measurements, surface oil flow visualiza-tion, and detailed particle image velocimetry (PIV) measurements in two orthogonal planes to help understand the features of SWBLI in the com-pression ramp geometry and the forward-facing step case. The SWBLI at a compression ramp has been more widely studied, and our measurements show the general features that have been seen in earlier studies. The upstream boundary layer is found to separate close to the ramp corner forming a separation bubble. The streamwise length of the separa-tion bubble is found to increase with the ramp angle, with a consequent shift of the shock foot further upstream. At very small ramp angles up to 10 degrees, there is no evidence of separation, while at large ramp angles of 28 degrees, the separation bubble extends upstream to about 3.5δ(δ=boundary layer thickness). In all cases, the separation bubble is however very small in the wall normal direction, typically known to be about 0.1δ, and hence is difficult to directly measure in experiments using PIV. Shock foot measurements using PIV show that the shock has a spanwise ripple, which seems directly related to the high-and low-speed streaks in the in-coming boundary layer as recently shown by Ganapathisubramani et al. (2007). The forward-facing step configuration may be thought of as an extreme case of the compression ramp geometry, with a ramp angle of 90 degrees. This configuration has not been extensively studied, and is experimentally convenient due to the large separation bubbles formed ahead of the step. In the present work, extensive measurements of the mean and unsteady flow around this configuration have been done, especially for the case of h/δ=2, where his the step height. Pressure measurements in this case, show clear low-frequency motions of the shock at non-dimensional frequencies of about fh/U∞≈ 0.02. In this case, PIV measurements show the pres-ence of a large mean separation bubble extending to about 4hupstream and about 1hvertically. Instantaneous PIV measurements have been done in both cross-stream (streamwise and wall-normal plane) and in the span-wise (streamwise-spanwise) plane. Instantaneous cross-stream PIV mea-surements show significant variations of the shock location and angle, be-sides large variations in the recirculation region (or separation bubble), this being determined as the area having streamwise velocities less than zero. From a large set of individual PIV instantaneous fields, we can estimate the correlation of the measured shock location to both downstream effects like the area of the recirculation region, and upstream effects like the presence of high-/low-speed streaks in the oncoming boundary layer. We find that the shock location measured from data outside the boundary layer is more highly correlated to downstream effects as measured through the recircu-lation area compared to upstream effects in the boundary layer. However, we find that the shock foot within the boundary layer has ripples in the spanwise direction which are well correlated to the presence of high-/low-speed streaks in the incoming boundary layer. These spanwise ripples are however found to be small (less than one h) compared to the highly three-dimensional shape of the recirculation region with spanwise variation of the order of 3 step heights. In summary, the study shows that the separated region ahead of the step is highly three-dimensional. The shock foot within the boundary layer is found to have ripples that are well correlated to fluctuations in the in-coming boundary layer. However, we find that the large-scale nearly two-dimensional shock motions outside the boundary layer are not well cor-related to the fluctuations in the boundary layer, but are instead well cor-related with the spanwise-averaged separation bubble extent. Hence, the present results suggest that for the forward-facing step configuration, it is the downstream effect caused by the separation bubble that leads to the observed low-frequency shock motions.
349

Etude expérimentale et numérique de l'interaction aérodynamique entre deux profils : application au risque aéronautique du décrochage profond / Experimental and numerical study of the aerodynamic interaction between two airfoils : application to deep stall aeronautical hazard

Hetru, Laurent 16 November 2015 (has links)
Le décrochage profond est un cas particulier du décrochage d’un avion, où l'empennage horizontal est entièrement situé dans le sillage décollé de la voilure principale. Le plan perd ainsi son efficacité, ce qui se traduit par une position d'équilibre en tangage stable, à une incidence élevée, dont il est impossible de sortir par une manœuvre simple. L’objectif de cette étude est de caractériser l’aérodynamique associée à ce phénomène et de proposer une procédure d’identification et de récupération. Il est proposé une démarche visant à déterminer la dynamique bidimensionnelle de l’écoulement autour d’une configuration aéronautique de référence. Les coefficients aérodynamiques, obtenus dans une large plage d’incidence, mettent en évidence l’effet de l’interaction entre les profils sur le décrochage, qui impacte principalement le profil aval. L’analyse des champs de vitesse fournit l’étendue et l’évolution axiale des sillages des profils. Un traitement des champs de vitesse par moyennes de phase permet de reconstruire la dynamique temporelle. À partir de ces résultats, un modèle potentiel de forçage de l’écoulement autour du profil aval permet d’expliquer la modification du coefficient de portance imposé par l’interaction. Des simulations numériques de l’écoulement, qui fournissent des champs résolus en temps, permettent de retrouver certaines évolutions expérimentales. L’ensemble des résultats est utilisé, en parallèle à des données issues d’un aéronef réel, dans un modèle de vol longitudinal afin d’analyser le comportement dynamique de l’avion. Des critères permettant d’identifier la dynamique qui conduit à cet équilibre, fournissent une détection précoce de ce dernier. / Deep stall is a specific type of airplane stall, in which the horizontal tail is inside the detached wake of the main wing. The tail loses its efficiency, leading to a stable pitching equilibrium position with a high angle-of-attack, without any easy recovery procedure. The aim of the study is to characterize the aerodynamic associated to that phenomenon in order to propose an identification and recovery procedure. The approach consists in a two-dimensional flow characterization based on an aeronautical reference configuration. Aerodynamic coefficients, obtained for a wide range of angles-of-attack, show the interaction between the airfoils on the stall of the downstream airfoil. The analysis of velocity fields gives the width and the axial development of the airfoils wakes. Phase-averages of velocity fields lead to the synthesis of flow time-development. With these results, a potential model of flow forcing on the downstream airfoil explains the lift coefficient alteration imposed by the interaction. Flow numerical simulations, giving time-resolved fields, provide good accordance with experimental developments .The whole set of results is used, concurrently with real aircraft data, inside a longitudinal flight model in order to analyze the airplane dynamical behavior. Criteria for the identification of the dynamic leading to that equilibrium provide a rapid detection of deep stall and the implementation of a recovery strategy.
350

Study Of Stall Flutter Of An Isolated Blade In A Low Reynolds Number Incompressible Flow

Bhat, Shantanu 01 1900 (has links) (PDF)
Highly-loaded turbomachine blades can stall under off-design conditions. In this regime, the flow can separate close to the leading edge of the blade in a periodic manner that can lead to blade vibrations, commonly referred to as stall flutter. Prior experimental studies on stall flutter have been at large Re (Re ~ 106). In the present work, motivated by applications in Unmanned Air Vehicles (UAV) and Micro Air Vehicles (MAV), we study experimentally the forces and flow fields around an oscillating blade at low Re (Re ~ 3 x 104). At these low Re, the flow even over the stationary blade can be quite different. We experimentally study the propensity of an isolated symmetric and cambered blade (with chord c) to undergo self-excited oscillations at high angles of attack and at low Reynolds numbers (Re ~ 30, 000). We force the blade, placed at large mean angle of attack, to undergo small amplitude pitch oscillations and measure the unsteady loads on the blade. From the measured loads, the direction and magnitude of energy transfer to/from the blade is calculated. Systematic measurements have been made for varying mean blade incidence angles and for different excitation amplitudes and frequencies (f). These measurements indicate that post stall there is a possibility of excitation of the blade over a range of Strouhal Numbers (St = fc/U) with the magnitude of the exciting energy varying with amplitude, frequency and mean incidence angles. In particular, the curves for the magnitude of the exciting energy against Strouhal number (St) are found to shift to higher St values as the mean angle of attack is increased. We perform the same set of experiments on two different blade shapes, namely NACA 0012 and a compressor blade profile, SC10. Both blade profiles show qualitatively similar phenomena. The flow around both the stationary and oscillating blades is studied through Particle Image Velocimetry (PIV). PIV measurements on the stationary blade show the gradual shift of the flow separation point towards the leading edge with increasing angle of attack, which occurs at these low Re. From PIV measurements on an oscillating blade near stall, we present the flow field around the blade at different phases of the blade oscillation. These show that the boundary layer separates from the leading edge forming a shear layer, which flaps with respect to the blade. As the Strouhal number is varied, the phase between the flapping shear layer and the blade appears to change. This is likely to be the reason for the observed change in the sign of the energy transfer between the flow and the blade that is responsible for stall flutter.

Page generated in 0.308 seconds