Spelling suggestions: "subject:"2articles lemsystems"" "subject:"2articles atemsystems""
1 |
Analysis of Swarm Behavior in Two DimensionsRyan, Louis 31 May 2012 (has links)
We investigate the steady state solutions that can exist for a two dimensional swarm of biological organisms, which have pairwise social interaction forces. The three steady states we investigate using a continuum model are a ribbon migrating swarm, a circular migrating swarm, and a milling swarm. We solve these numerically by reformulating the integral equation that arises from the continuum model as an energy minimization problem. For the ribbon migrating solution, we are able to determine an analytic solution from Carleman's equation which arises after an asymptotic expansion of the social interaction potential. Using this technique we are able to show the existence of a square root singularity that emerges at the boundary of the compactly supported swarm. The analytic solution agrees with the numerical solution for certain parameter values in the social interaction potential. We then demonstrate the existence of solutions for a migrating and milling circular swarm which contain a square root singularity. The milling swarm looks similar to the infinite ribbon, so we are able to use an asymptotic expansion of the potential to obtain an analytic solution in this case as well. The singularities in the density of the swarm suggest that the Morse potential should not be used for modeling biological swarming.
|
2 |
Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact / Models and asymptotic shape theorems : contact processesDeshayes, Aurélia 10 December 2014 (has links)
Cette thèse s'inscrit dans l'étude des systèmes de particules en interaction et plus précisément dans celle des modèles de croissance aléatoire qui représentent un quantité qui grandit au cours du temps et s'étend sur un réseau. Ce type de processus apparaît naturellement quand on regarde la croissance d'un cristal ou bien la propagation d'une épidémie. Cette dernière est bien modélisée par le processus de contact introduit en 1974 par Harris. Le processus de contact est un des plus simples systèmes de particules en interaction présentant une transition de phase et l'on connaît maintenant bien son comportement sur ses phases. De nombreuses questions ouvertes sur ses extensions, notamment celles de formes asymptotiques, ont motivé ce travail. Après la présentation de ce processus et de certaines de ses extensions, nous introduisons et étudions une nouvelle variante: le processus de contact avec vieillissement où les particules ont un âge qui influence leur capacité à donner naissance à leurs voisines. Nous effectuerons pour ce modèle un couplage avec une percolation orientée inspiré de celui de Bezuidenhout-Grimmett et nous montrerons la croissance d'ordre linéaire de ce processus. Dans la dernière partie de la thèse, nous nous intéressons à la preuve d'un théorème de forme asymptotique pour des modèles généraux de croissance aléatoire grâce à des techniques sous-Additives, parfois complexes à mettre en place à cause de la non 'survie presque sûre' de nos modèles. Nous en concluons en particulier que le processus de contact avec vieillissement, le processus de contact en environnement dynamique, la percolation orientée avec immigration hostile, et le processus de contact avec sensibilisation vérifient des résultats de forme asymptotique / This thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
|
3 |
Représentation probabiliste de type progressif d'EDP nonlinéaires nonconservatives et algorithmes particulaires. / Forward probabilistic representation of nonlinear nonconservative PDEs and related particles algorithms.Le cavil, Anthony 09 December 2016 (has links)
Dans cette thèse, nous proposons une approche progressive (forward) pour la représentation probabiliste d'Equations aux Dérivées Partielles (EDP) nonlinéaires et nonconservatives, permettant ainsi de développer un algorithme particulaire afin d'en estimer numériquement les solutions. Les Equations Différentielles Stochastiques Nonlinéaires de type McKean (NLSDE) étudiées dans la littérature constituent une formulation microscopique d'un phénomène modélisé macroscopiquement par une EDP conservative. Une solution d'une telle NLSDE est la donnée d'un couple $(Y,u)$ où $Y$ est une solution d' équation différentielle stochastique (EDS) dont les coefficients dépendent de $u$ et de $t$ telle que $u(t,cdot)$ est la densité de $Y_t$. La principale contribution de cette thèse est de considérer des EDP nonconservatives, c'est-à- dire des EDP conservatives perturbées par un terme nonlinéaire de la forme $Lambda(u,nabla u)u$. Ceci implique qu'un couple $(Y,u)$ sera solution de la représentation probabiliste associée si $Y$ est un encore un processus stochastique et la relation entre $Y$ et la fonction $u$ sera alors plus complexe. Etant donnée la loi de $Y$, l'existence et l'unicité de $u$ sont démontrées par un argument de type point fixe via une formulation originale de type Feynmann-Kac. / This thesis performs forward probabilistic representations of nonlinear and nonconservative Partial Differential Equations (PDEs), which allowto numerically estimate the corresponding solutions via an interacting particle system algorithm, mixing Monte-Carlo methods and non-parametric density estimates.In the literature, McKean typeNonlinear Stochastic Differential Equations (NLSDEs) constitute the microscopic modelof a class of PDEs which are conservative. The solution of a NLSDEis generally a couple $(Y,u)$ where $Y$ is a stochastic process solving a stochastic differential equation whose coefficients depend on $u$ and at each time $t$, $u(t,cdot)$ is the law density of the random variable $Y_t$.The main idea of this thesis is to consider this time a non-conservative PDE which is the result of a conservative PDE perturbed by a term of the type $Lambda(u, nabla u) u$. In this case, the solution of the corresponding NLSDE is again a couple $(Y,u)$, where again $Y$ is a stochastic processbut where the link between the function $u$ and $Y$ is more complicated and once fixed the law of $Y$, $u$ is determined by a fixed pointargument via an innovating Feynmann-Kac type formula.
|
Page generated in 0.0591 seconds