Spelling suggestions: "subject:"apropagation duu chaos"" "subject:"apropagation duu khaos""
1 |
Application du calcul stochastique à une classe d'EDP non linéaireFilali, Siham 29 November 2005 (has links) (PDF)
Dans cette thèse nous avons utilisé les outils du calcul stochastique pour<br />obtenir l'existence et l'unicité de la solution d'un système d'équations aux<br />dérivées partielles non linéaire dont l'origine remonte à l'étude des modèles de particules collantes.<br />Premièrement, on construit deux diffusions dirigées par des browniens indépendants issues de points différents mais dont la dérive est la même fonction qui combine les deux densités de l'une et l'autre diffusions. On montre que le bonne combinaison de la densité et de la vitesse des particules est solution d'un système d'équations aux dérivées partielles appelé système de gaz sans pression avec viscosité.<br />Deuxièmement, On reprend la problématique d'un article de Sheu sur les densités de transition d'une diffusion non dégénéré, on aboutit à une meilleure précision sur les constantes apparaissant dans l'estimation de Sheu.<br />Finalement, on généralise le système de gaz sans pression déjà étudié par A. Dermoune en 2003, en remplaçant le laplacien par un opérateur plus générale. Alors on montre: l'existence d'une solution faible pour une équation différentielles stochastique non linéaire, identification de la dérive et l'unicité de la solution.
|
2 |
Mathematical modeling in neuroscience : collective behavior of neuronal networks & the role of local homeoproteins diffusion in morphogenesis / Modélisation mathématique en neuroscience : comportement collectif des réseaux neuronaux & rôle de la diffusion locale des homéoprotéines dans la morphogenèseQuininao, Cristobal 02 June 2015 (has links)
Ce travail est consacré à l’étude de quelques questions issues de la modélisation des systèmes biologiques en combinant des outils analytiques et probabilistes. Dans la première partie, nous nous intéressons à la dérivation des équations de champ moyen associées aux réseaux de neurones, ainsi qu’à l’étude de la convergence vers l’équilibre des solutions. Dans le Chapitre 2, nous utilisons la méthode de couplage pour démontrer la propagation du chaos pour un réseau neuronal avec délais et avec une architecture aléatoire. Dans le Chapitre 3, nous considérons une équation cinétique du type FitzHugh-Nagumo. Nous analysons l'existence de solutions et prouvons la convergence exponentielle dans les régimes de faible connectivité. Dans la deuxième partie, nous étudions le rôle des homéoprotéines (HPs) sur la robustesse des bords des aires fonctionnelles. Dans le Chapitre 4, nous proposons un modèle général du développement neuronal. Nous prouvons qu'en l'absence de diffusion, les HPs sont exprimées dans des régions irrégulières. Mais en présence de diffusion, même arbitrairement faible, des frontières bien définies émergent. Dans le Chapitre 5, nous considérons le modèle général dans le cas unidimensionnel et prouvons l'existence de solutions stationnaires monotones définissant un point d'intersection unique aussi faible que soit le coefficient de diffusion. Enfin, dans la troisième partie, nous étudions une équation de Keller-Segel sous-critique. Nous démontrons la propagation du chaos sans aucune restriction sur le noyau de force. En outre, nous démontrons que la propagation du chaos a lieu dans le sens de l’entropie. / This work is devoted to the study of mathematical questions arising from the modeling of biological systems combining analytic and probabilistic tools. In the first part, we are interested in the derivation of the mean-field equations related to some neuronal networks, and in the study of the convergence to the equilibria of the solutions to the limit equations. In Chapter 2, we use the coupling method to prove the chaos propagation for a neuronal network with delays and random architecture. In Chapter 3, we consider a kinetic FitzHugh-Nagumo equation. We analyze the existence of solutions and prove the nonlinear exponential convergence in the weak connectivity regime. In the second part, we study the role of homeoproteins (HPs) on the robustness of boundaries of functional areas. In Chapter 4, we propose a general model for neuronal development. We prove that in the absence of diffusion, the HPs are expressed on irregular areas. But in presence of diffusion, even arbitrarily small, well defined boundaries emerge. In Chapter 5, we consider the general model in the one dimensional case and prove the existence of monotonic stationary solutions defining a unique intersection point for any arbitrarily small diffusion coefficient. Finally, in the third part, we study a subcritical Keller-Segel equation. We show the chaos propagation without any restriction on the force kernel. Eventually, we demonstrate that the propagation of chaos holds in the entropic sense.
|
3 |
Limite de champ moyen et propagation du chaos pour des systèmes de particules avec interaction discontinue / Mean field limit and propagation of chaos for particle system with discontinuous interactionSalem, Samir 24 October 2017 (has links)
Dans cette thèse, on étudie des problèmes de propagation du chaos et de limite de champ moyen pour des modèles relatant le comportement collectif d'individus ou de particules. Particulièrement, on se place dans des cas où l'interaction entre ces individus/particules est discontinue. Le premier travail établit la propagation du chaos pour l'équation de Vlasov-Poisson-Fokker-Planck 1d. Plus précisément, on montre que la distribution des particules évoluant sur la droite des réels interagissant via la fonction signe, converge vers la solution de l'équation de VPFP 1d, en probabilité par des techniques de type grandes déviations, et en espérance par des techniques de loi des grands nombre. Dans le second travail, on étudie une variante du modèle de Cucker-Smale, où le noyau de communication est l'indicatrice d'un cône dont l'orientation dépend de la vitesse de l'individu. Une estimation de stabilité fort-faible en distance de M.K.W. est obtenue, qui implique la limite de champ moyen. Le troisième travail a consisté à introduire de la diffusion en vitesse dans le modèle précédemment cité. Cependant, il faut ajouter une diffusion tronquée afin de préserver un système dans lequel les vitesses restent uniformément bornées. Finalement, on étudie une variante de l'équation d'agrégation où l'interaction entre individus est donnée par un cône dont l'orientation dépend de la position de l'individu. Dans ce cas on peut seulement donner une estimation de stabilité fort-faible en distance $W_\infty$, et le modèle doit être posé dans un domaine borné dans le cas avec diffusion. / In this thesis, we study some propagation of chaos and mean field limit problems arising in modelisation of collective behavior of individuals or particles. Particularly, we set ourselves in the case where the interaction between the individuals/particles is discontinuous. The first work establihes the propagation of chaos for the 1d Vlasov-Poisson-Fokker-Planck equation. More precisely, we show that the distribution of particles evolving on the real line and interacting through the sign function converges to the solution of the 1d VPFP equation, in probability by large deviations-like techniques, and in expectation by law of large numbers-like techniques. In the second work, we study a variant of the Cucker-Smale, where the communication weight is the indicatrix function of a cone which orientation depends on the velocity of the individual. Some weak-strong stability estimate in M.K.W. distance is obtained for the limit equation, which implies the mean field limit. The third work consists in adding some diffusion in velocity to the model previously quoted. However one must add some truncated diffusion in order to preserve a system in which velocities remain unifomrly bounded. Finally we study a variant of the aggregation equation where the interaction between individuals is also given by a cone which orientation depends on the position of the individual. In this case we are only able to provide some weak-strong stability estimate in $W_\infty$ distance, and the problem must be set in a bounded domain for the case with diffusion.
|
4 |
Inégalités de Sobolev logarithmiques pour des problèmes d'évolution non linéairesMalrieu, Florent 11 December 2001 (has links) (PDF)
Nous étudions des équations aux dérivées partielles non linéaires du type McKean-Vlasov. Nous leur associons des systèmes de particules en interaction de type champ moyen pour lesquels nous établissons des inégalités de Sobolev logarithmiques à temps fini. Grâce à un résultat supplémentaire de propagation du chaos, nous déduisons, dans certains cas, le comportement en temps long de l'équation non linéaire en fonction de celui du système de particules. Enfin, nous établissons des intervalles de confiance exacts pour la convergence de méthodes de Monte-Carlo pour les schémas d'Euler explicites et implicites associés à des processus de diffusion. Ces résultats s'appliquent notamment pour les systèmes de particules cités plus haut.
|
5 |
Stochastic models for collective motions of populations / Modèles stochastiques pour des mouvements collectifs de populationsPédèches, Laure 11 July 2017 (has links)
Dans cette thèse, on s'intéresse à des systèmes stochastiques modélisant un des phénomènes biologiques les plus mystérieux, les mouvements collectifs de populations. Pour un groupe de N individus, vus comme des particules sans poids ni volume, on étudie deux types de comportements asymptotiques : d'un côté, en temps long, les propriétés d'ergodicité et de flocking, de l'autre, quand le nombre de particules N tend vers l'infini, les phénomènes de propagation du chaos. Le modèle, déterministe, de Cucker-Smale, un modèle cinétique de champ moyen pour une population sans structure hiérarchique, est notre point de départ : les deux premiers chapitres sont consacrés à la compréhension de diverses dynamiques stochastiques qui s'en inspirent, du bruit étant rajouté sous différentes formes. Le troisième chapitre, originellement une tentative d'amélioration de ces résultats, est basé sur la méthode du développement en amas, un outil de physique statistique. On prouve l'ergodicité exponentielle de certains processus non- markoviens à drift non-régulier. Dans la dernière partie, on démontre l'existence d'une solution, unique dans un certain sens, pour un système stochastique de particules associé au modèle chimiotactique de Keller et Segel. / In this thesis, stochastic dynamics modelling collective motions of populations, one of the most mysterious type of biological phenomena, are considered. For a system of N particle-like individuals, two kinds of asymptotic behaviours are studied: ergodicity and flocking properties, in long time, and propagation of chaos, when the number N of agents goes to infinity. Cucker and Smale, deterministic, mean-field kinetic model for a population without a hierarchical structure is the starting point of our journey: the fist two chapters are dedicated to the understanding of various stochastic dynamics it inspires, with random noise added in different ways. The third chapter, an attempt to improve those results, is built upon the cluster expansion method, a technique from statistical mechanics. Exponential ergodicity is obtained for a class of non-Markovian process with non-regular drift. In the final part, the focus shifts onto a stochastic system of interacting particles derived from Keller and Segel 2-D parabolic-elliptic model for chemotaxis. Existence and weak uniqueness are proven.
|
6 |
Processus de Fleming-Viot, distributions quasi-stationnaires et marches aléatoires en interaction de type champ moyen / Fleming-Viot process, quasi-stationary distributions and random walks in mean field type interactionThai, Anh-Thi Marie Noémie 27 November 2015 (has links)
Dans cette thèse nous étudions le comportement asymptotique de systèmes de particules en interaction de type champ moyen en espace discret, systèmes pour lesquels l'interaction a lieu par l'intermédiaire de la mesure empirique. Dans la première partie de ce mémoire, nous nous intéressons aux systèmes de particules de type Fleming-Viot: les particules se déplacent indépendamment suivant une dynamique markovienne jusqu'au moment où l'une d'entre elles touche un état absorbant. A cet instant, la particule absorbée choisit uniformément une autre particule et saute sur sa position. L'ergodicité du processus est établie dans le cadre de marches aléatoires sur N avec dérive vers l'origine et pour une dynamique proche de celle du graphe complet. Pour ce dernier, nous obtenons une estimation quantitative de la convergence en temps long à l'aide de la courbure de Wasserstein. Nous montrons de plus la convergence de la distribution empirique stationnaire vers une unique distribution quasi-stationnaire, quand le nombre de particules tend vers l'infini. Dans la deuxième partie de ce mémoire, nous nous intéressons au comportement en temps long et quand le nombre de particules devient grand, d'un système de processus de naissance et mort pour lequel les particules interagissent à chaque instant par le biais de la moyenne de leurs positions. Nous établissons l'existence d'une limite macroscopique, solution d'une équation non linéaire ainsi que le phénomène de propagation du chaos avec une estimation quantitative et uniforme en temps / In this thesis we study the asymptotic behavior of particle systems in mean field type interaction in discrete space, where the system acts over one fixed particle through the empirical measure of the system. In the first part of this thesis, we are interested in Fleming-Viot particle systems: the particles move independently of each other until one of them reaches an absorbing state. At this time, the absorbed particle jumps instantly to the position of one of the other particles, chosen uniformly at random. The ergodicity of the process is established in the case of random walks on N with a dirft towards the origin and on complete graph dynamics. For the latter, we obtain a quantitative estimate of the convergence described by the Wasserstein curvature. Moreover, under the invariant measure, we show the convergence of the empirical measure towards the unique quasi-stationary distribution as the size of the system tends to infinity. In the second part of this thesis, we study the behavior in large time and when the number of particles is large of a system of birth and death processes where at each time a particle interacts with the others through the mean of theirs positions. We establish the existence of a macroscopic limit, solution of a non linear equation and the propagation of chaos phenomenon with quantitative and uniform in time estimate
|
7 |
Processus stochastiques associés aux équations d'évolution linéaires ou non-linéaires et méthodes numériques probabilistesDeaconu, Madalina 07 May 2008 (has links) (PDF)
Ce document de synthèse est consacré à l'interprétation probabiliste de certaines équations d'évolution liénaires ou non-linéaires ainsi qu'à l'étude de méthodes numériques probabilistes. La première partie réunit plusieurs résultats qui mettent en évidence les liens qui existent entre les équations aux dérivées partielles et les processus de diffusion pour des modèles linéaires ou non-linéaires. Un paragraphe important est consacré à l'approche probabiliste des modèles de coagulation et/ou fragmentation. Nous présentons dans la seconde partie la construction de nouveaux algorithmes de simulation de type Monte-Carlo pour une large classe d'équations différentielles stochastiques. Cette méthode permet d'estimer de façon précise le premier moment de sortie d'un domaine et la position de sortie pour un processus stochastique. Nous nous intéressons ensuite aux techniques d'échantillonnage pondéré afin de réduire la variance de nos éstimateurs. Dans la troisième partie nous présentons des travaux sur l'analyse fine de certains processus stochastiques dans les espaces de Besov. La quatrième partie est consacrée à des applications issues de collaborations industrielles.
|
8 |
Inégalités fonctionnelles et comportement en temps long de quelques processus de MarkovMalrieu, Florent 26 November 2010 (has links) (PDF)
Les travaux présentés concernent trois thématiques connexes~: Interprétation et étude probabiliste d'équations de McKean-Vlasov - propagation du chaos, - estimation quantitative de la convergence à l'équilibre, - modèles cinétiques. Inégalités fonctionnelles - inégalités fonctionnelles et concentration de la mesure pour les schémas d'Euler, - comportement en temps long de diffusions inhomogènes, - inégalités fonctionnelles et concentration de la mesure pour un mélange. Processus de Markov déterministes par morceaux - modélisation markovienne (télécomunications, biologie, chimie), - construction de couplage explicites et convergence en temps long, - propriétés de la mesure invariante. Le fil rouge de ce travail est la recherche de bornes quantitatives pour l'étude de processus de Markov issus de la modélisation (physique, biologie, etc). Souvent, ces processus possèdent des propriétés de symétrie, de régularité ou de monotonie qu'il est possible d'exploiter pour étudier finement leurs comportements. L'idée est donc ici non pas de chercher à établir des propriétés génériques et qualitatives valables pour la classe la plus large de processus mais bien d'utiliser la dynamique spécifique des processus étudiés pour décrire leur convergence à l'équilibre.
|
9 |
Comportements en temps long et à grande échelle de quelques dynamiques de collision. / Long time and large scale behaviour of a few collisional dynamicsReygner, Julien 24 November 2014 (has links)
Cette thèse comporte trois parties essentiellement indépendantes, dont chacune est consacrée à l'étude d'un système de particules, suivant une dynamique déterministe ou aléatoire, et à l'intérieur duquel les interactions se font uniquement aux collisions entre les particules.La Partie I propose une étude numérique et théorique des états stationnaires hors de l'équilibre du Modèle d'Échange Complet, introduit en physique pour comprendre le transport de la chaleur dans certains matériaux poreux.La Partie II est consacrée à un système de particules browniennes évoluant sur la droite réelle et interagissant à travers leur rang. Le comportement limite de ce système, en temps long et à grand nombre de particules, est décrit, puis les résultats sont appliqués à l'étude d'un modèle de marché financier dit modèle d'Atlas en champ moyen.La Partie III introduit une version multitype du système de particules étudié dans la partie précédente, qui permet d'approcher des systèmes paraboliques d'équations aux dérivées partielles non-linéaires. La limite petit bruit de ce système est appelée dynamique des particules collantes multitype et approche cette fois des systèmes hyperboliques. Une étude détaillée de cette dynamique donne des estimations de stabilité en distance de Wasserstein sur les solutions de ces systèmes. / This thesis contains three independent parts, each one of which is dedicated to the study of a particle system, following either a deterministic or a stochastic dynamics, and in which interactions only occur at collisions. Part I contains a numerical and theoretical study of nonequilibrium steady states of the Complete Exchange Model, which was introduced by physicists in order to understand heat transfer in some porous materials. Part II is dedicated to a system of Brownian particles evolving on the real line and interacting through their ranks. The long time and mean-field behaviour of this system is described, then the results are applied to the study of a model of equity market called the mean-field Atlas model. Part III introduces a multitype version of the particle system studied in the previous part, which allows to approximate parabolic systems of nonlinear partial differential equations. The small noise limit of of this system is called multitype sticky particle dynamics and now approximates hyperbolic systems. A detailed study of this dynamics provides stability estimates in Wasserstein distance for the solutions of these systems.
|
10 |
Contribution à l'étude de l'équation de Boltzmann homogène / Contribution to the study of the homogeneous Boltzmann equationXu, Liping 29 June 2017 (has links)
Dans cette thèse, on étudie principalement l’équation de Boltzmann homogène 3D pour les potentiels durs et les potentiels modérément mous et l’équivalence entre une EDS à sauts et l’EDP correspondante. En particulier, on calcule le spectre multifractal de certains processus stochastiques, on étudie le caractère bien-posé et la propagation du chaos pour l’équation de Boltzmann. Dans le premier chapitre, on étudie les propriétés trajectorielle pathologiques du processus stochastique (Vt)t_0 représentant l’évolution de la vitesse d’une particule typique dans un gaz modélisé par l’équation de Boltzmann pour les potentiels durs ou modérément mous. Nous montrons que ce processus est multifractal et qu’il a un spectre déterministe. Pour les potentiels durs, nous donnons aussi le spectre multifractal du processus $X_t =\int_0^t V_s ds$, représentant l’évolution de la position de la particule typique. Dans le deuxième chapitre, nous étudions l’unicité de la solution faible à l’équation de Boltzmann dans la classe de toutes les solutions mesures, pour les potentiels modérément mous. Ceci nous permet aussi d’obtenir un taux quantitatif de propagation du chaos pour le système de particules de Nanbu. / This thesis mainly studies the 3D homogeneous Boltzmann equation for hard potentials and moderately soft potentials and the equivalence between some jumping SDE and the corresponding PDE. In particular, we compute the multifractal spectrum of some stochastic processes, study the well-posedness and the propagation of chaos for the Boltzmann equation. The purpose of the first chapter is to study the pathwise properties of the stochastic process $(V_t)_{t\geq0}, representing the time-evolution of the velocity of a typical particle in a gas modeled by the Boltzmann equation for hard or moderately potentials. We show that this process is multifractal and has a deterministic spectrum. For hard potentials, we also give the multifractal spectrum of the process $X_t =\int_0^t V_s ds$, representing the time-evolution of the position of the typical particle. The second chapter is devoted to study the uniqueness of the weak solution to the Boltzmann equation in the class of all measure solutions, in the case of moderately soft potentials. This allows us to obtain a quantitive rate of propagation of chaos for Nanbu particle system for this singular interaction. Finally in the third chapter, we extend Figalli’s work [19] to study the relation between some jumping SDE and the corresponding Fokker-Planck equation. We prove that for any weak solution $(ft)_{t\in[0,T]}$ of the PDE, there exists a weak solution to the SDE of which the time-marginals are given by the family $(f_t)_{t\in[0,T]$
|
Page generated in 0.0944 seconds