Spelling suggestions: "subject:"particule janus"" "subject:"articule janus""
1 |
Effet Seebeck à l’échelle nanométrique de nanostructures chaudes / Nanoscale Seebeck effect at hot nanostructuresLy, Aboubakry 09 February 2018 (has links)
L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADN / The aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA.
|
2 |
Microfluidic-assisted synthesis and release properties of multi-domain polymer microparticles drug carriers / Synthèse de vecteurs microparticulaires par microfluidique et études de la libération à partir de microparticules polymères multi-domainesKhan, Ikram Ullah 24 October 2014 (has links)
Les caractéristiques et les propriétés de libération de microparticules chargées de médicament dépendent de la nature des matériaux employés, des propriétés physicochimiques des microparticules, du choix de la méthode de production, et enfin des propriétés des molécules encapsulées. A l'inverse de la plupart des méthodes conventionnelles, les méthodes microfluidiques présentent l’avantage de bien mieux contrôler la génération de gouttelettes, leur taille et leur distribution de tailles. Ainsi des dispositifs microfluidiques à base de capillaires ont été développés pour obtenir des microbilles de polymère mais également des microparticules de type janus, coeur-écorce ou troyenne, toutes monodisperses en taille et chargées de médicament(s). Ces particules ont été produites à partir de solutions de monomère qui furent polymérisées par irradiations UV de telle sorte à garder intacte l'activité des molécules chargées. Ces dispositifs peuvent être assemblés dans un court laps de temps et un simple changement dans leur conception permet d’obtenir des morphologies de particules très différentes. Ces particules ont été développées dans le but de résoudre les problèmes rencontrés dans l’administration orale de médicaments. Par exemple les microbilles peuvent être utilisées pour délivrer des anti-inflammatoires non stéroïdiens de manière continue tandis que les particules Janus peuvent libérer, simultanément et sur le même site, deux principes actifs possédant des propriétés complètement différentes (solubilité, compatibilité) également de manière prolongée. Quant aux particules coeur-écorce, elles ont été conçues pour cibler la région du côlon de l'intestin humain, et y libérer simultanément deux médicaments. Les particules troyennes furent synthétisées à l’aide d’un procédé microfluidique semi-continu qui a permis une manipulation plus sécurisée des nanoparticules vectrices ainsi que la libération continue d’un médicament dans un liquide gastrique simulé. Chaque système a été entièrement caractérisé pour assurer l’invariance entre lots et la reproductibilité. En général, la libération des ingrédients actifs a pu être facilement contrôlée/ajustée par le réglage des paramètres opératoires et de matériaux tels que les débits des différentes phases, la nature et la concentration du médicament, des (co)monomères, des agents tensioactif et de réticulation, le pH du milieu de libération. Ces différents paramètres influencent les propriétés des microparticules telles que leur morphologie, forme, taille et densité de réticulation du réseau polymère. / Characteristics and release properties of drug loaded microparticles depend upon material used and choice of production method. Conversely to most of the conventional ones, microfluidic methods give an edge by improving the control over droplet generation, size and size distribution. Capillary-based microfluidic devices were successfully used to obtain monodisperse drug(s) loaded microbeads, janus, core-shell and trojan particles using UV initiated free radical polymerization while keeping activity of active loaded molecules. These devices can be assembled in a short period of time and a slight change in design gives completely different microparticles morphologies. These particles were developed with the aim to address different issues experienced in oral drug delivery. For instance microbeads can be used to deliver NASIDs in a sustained release manner while janus particles can release two APIs with completely different properties (solubility, compatibility) also in a sustained release manner. Core-shell particles were designed to target colonic region of human intestine for dual drug delivery. Trojan particles were synthesized in a new semi-continuous microfluidic process, thus improving nanoparticles safety handling and release in simulated gastric fluid. Each system was fully characterized to insure batch to batch consistency and reproducibility. In general, the release of active ingredients was controlled by tuning the operating and material parameters like phases flow rates, nature and concentration of drug, (co)monomers, surfactant and crosslinker, pH of release media with the result of different particle morphologies, sizes and shapes or matrix crosslinking density.
|
Page generated in 0.0407 seconds