• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Creation of bifunctional particles with spatially segregated proteins

Tang, Jennifer L 06 April 2012 (has links)
We present a fabrication process to create bifunctional microparticles displaying two different proteins have been spatially segregated onto hemispheres. Silica and polystyrene microparticles with 2.0 m, 4.08 m, and 4.74 m diameters are processed with metal deposition to form two chemically distinct and segregated hemispheres. The surface of each hemisphere is then separately derivatized with proteins using different chemical conjugation strategies. These bifunctional Janus particles possess biologically relevant, native conformation proteins attached to a biologically-unreactive and safe substrate. They also display high densities of two types of spatially segregated proteins which may enable a range of capabilities that monofunctional particles cannot, such as improved targeting of drug carriers and bioimaging agents.
2

Improved Synthetic Methods for Patchy Particles

Ivanova, Nina 2011 December 1900 (has links)
Patchy particles are patterned particles with at least one well-defined patch that can have highly directional and strongly anisotropic interactions with other particles or surfaces. Multiple theoretical studies point to interesting self-assembly of these particles into superstructures and, as a result, a multitude of possible applications. However, reliable synthetic methods for patchy particles, especially at the sub-micron level, are still a challenge and an active area of research. This work presents a novel synthesis route for making patchy particles at the sub-micron level that involves the use of capillary condensation. Colloidal silica particles of various sizes were synthesized and ordered into closely-packed arrays via evaporative self-assembly. Various chemical agents were capillary condensed into the voids of this assembly which, due to the face-centered cubic structure of the crystallized colloidal silica, produced distinct \patches" on the particle surface. The patches on these particles were successfully functionalized with gold nanoparticles. This method was shown to provide control over the patch size by modifying the silica particle radius, which thermodynamically changes the amount of capillary condensation. The patchy nature of the resultant particles was confirmed using infrared spectroscopy, scanning electron and optical microscopies, energy dispersive x-ray analysis and zeta potential measurements.
3

Helices and Hamburgers from the Assembly of Linear ABC Triblock Copolymers in Block-Selective Solvents

Dupont, John 03 May 2010 (has links)
This Ph.D. thesis reports the discovery and study of several morphologies of ABC triblock copolymer assemblies in block selective solvents. One block copolymer self-assembled into helices (mostly double and some triple helices), and the other block copolymer formed a mixture of structures resembling hamburgers and striped cylinders. The helices, biomimmetic structures which are unusual from block copolymer self assembly, were prepared from the triblock copolymer poly(n-butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(tert-butyl acrylate) (PBMA-b-PCEMA-b-PtBA). They were formed spontaneously in several binary solvent mixtures including dichloromethane/methanol, tetrahydrofuran (THF)/methanol, and chloroform/methanol. They were formed in the composition ranges where the mixtures were good for the PtBA block, poor for the PCEMA block, and marginal for the PBMA block. The structure was studied and established by TEM, AFM, DLS and 1H NMR and by TEM tomography. The mechanism and kinetics of helix formation was examined. The Hamburger and striped cylinder structures were produced from poly(tert-butyl acrylate)-block-poly(2-cinnamoyloxyethyl methacrylate)-block-poly(succinated glyceryl monomethacrylate) or (PtBA-b-PCEMA-b-PSGMA) in mixtures of THF, (-)-sparteine and 1- or 2-propanol. Here THF solubilized all the blocks of the copolymer, while propanol was a precipitant for the middle block (PCEMA), and the chiral amine, (-)-sparteine, complexed with PSGMA and made it insoluble. Within the Hamburger-like structure, the “filling” was made of the complexed PSGMA chains and the "buns" were made of PCEMA. The striped cylinders were made of stacking alternating PCEMA and PtBA stubs. The PtBA chains were located on the outer surfaces of both of these structures. With the hamburger structures, after PCEMA crosslinking, we were able to remove the chiral amine by dialysis and make the PSGMA chains soluble again in solvents such as N, N dimethylformamide. The hamburgers were thus separated into two halves, with each half existing as a Janus particle, which had PtBA chains on one side and PSGMA chains on the other side. The Janus particles might have interesting applications, such as in Pickering emulsion stabilization. / Thesis (Ph.D, Chemistry) -- Queen's University, 2010-04-30 18:01:06.281
4

Effet Seebeck à l’échelle nanométrique de nanostructures chaudes / Nanoscale Seebeck effect at hot nanostructures

Ly, Aboubakry 09 February 2018 (has links)
L'objectif de ce travail est d'étudier l'effet thermoélectrique à l'échelle nanométrique des nanostructures chauffées. Dans un premier temps, nous étudions les mécanismes d'autopropulsion thermo-électrophorétique de particules Janus chauffées par laser. Ce mécanisme d'autopropulsion est principalement induit par l'effet Seebeck ou l'effet thermoélectrique. Cet effet provient de la séparation des charges survenues lorsqu'un gradient de température est présent dans la solution d'électrolyte: Une forte absorption du laser par la partie métallisée de la particule génère un gradient de température qui en retour agit sur les espèces ioniques (positive et négative) et les conduits vers les zones chaudes ou les zones froides. Ce mouvement d'ions entraine la création d'un champ électrique dipolaire qui, à proximité de la particule, dépend fortement des propriétés de surface. Ce changement de comportement de ce champ électrique sur une surface isolant ou conductrice n'affecte pas la vitesse de la particule. Dans un second temps, nous étudions les effets d'interactions hydrodynamiques et de la condensation des contre-ions sur la thermophorèse des polymères d'ADN. Comme résultat principal, la mobilité thermophorétique montre, en fonction de la longueur de la chaîne, un comportement non-monotone et se compose de deux contributions induites par les forces conductrices dominantes que sont l'effet Seebeck et le gradient de permittivité. À la fin, nous comparons notre résultat théorique avec une récente expérience sur l'ADN / The aim of this work is to study the nanoscale Seebeck effect at hot nanostructures. At first, we study the thermo-electrophoresis self-propulsion mechanism for a heated metal capped Janus colloid. The self-propulsion mechanism is mainly induced by the electrolyte Seebeck effect or thermoelectric effect. This effect takes its origin from the separation of charges occurring while a temperature gradient is present in a electrolyte solution: A strong absorption of laser light by the metal side of the particle creates a temperature gradient which in turn acts on ion-species (positive and negative) and drives them to the hot or the cold region. This motion of ion results in a dipolar electric field which, close to the particle, depends strongly on the surface properties. The change of behavior of the electric field at the insulating or conducting surface does not affect the velocity of the particle. At second, we study the effect of hydrodynamic interactions and counterion condensation in thermophoresis for DNA polymer. As the main result, the thermophoretic mobility shows, in function of the chain length, a non-monotonuous behavior and consists of two contributions induced by the dominant driving forces which are the thermally induced permittivity-gradient and the electrolyte Seebeck effect. At the end, we compare our theoretical result with recent experiment on single-stranded DNA.
5

Induced-Charge Electrokinetic Motion of a Heterogeneous Particle and Its Corresponding Applications

Daghighi, Yasaman January 2013 (has links)
This thesis conducts numerical and experimental studies of the nonlinear electrokinetic motion of heterogeneous particles in microfluidic systems and their corresponding applications in laboratory-on-a-chip (LOC) systems. Induced-charge electrokinetic (ICEK) phenomena flow is generated by applying an external electric field to a conducting particle immersed in an aqueous solution. As a result of this field, micro-vortices form around the conducting particle. Using this phenomenon, many shortcomings of classical electrokinetics (e.g. poor mixing, leakage, back flow problem) can be improved. This thesis proposes and investigates a complete 3-D numerical multi-physics method to calculate the induced zeta potential on the conducting surface of a heterogeneous object. To model the ICEK motion of a heterogeneous particle in a DC electric field, the moving grid technique is used to conduct the particle-fluid simulation. It was numerically shown that the vortices form near the conducting surface of a particle. Both transitional and rotational motions of heterogeneous particles are investigated. A set of novel experiments are designed and conducted to investigate several aspecs of ICEK. It is demonstrated for the first time that four vortices form around a conducting sphere in contact with an aqueous solution while the DC electric field is applied. The motions of heterogeneous particles are experimentally studied. The speed of a heterogeneous particle is compared with the same size non-conducting particle under the same experimental conditions and it is shown that the heterogeneous particle moves significantly faster than the non-conducting particle. It is also shown that the micro-vortices on the conducting section of the heterogeneous particle act like an engine and push the particle to move faster. These experiments verify the results of our simulation studies. We introduce three applications for induced-charge electrokinetic phenomena in ths thesis: ICEK micro-valve, ICEK micro-mixer, and ICEK micro-motor, which can be used in microfluidics and lab-on-a-chip devises. This ICEK micro-valve significantly improves many shortcomings of other micro-valves reported in the literature (such as leakage, considerable dead volume and complicated fabrication processes). Our ICEK micro-mixers take the advantages of induced micro-vortices and boost the mixing process in a micro-channel. As a result well mixed homogeneous (100%) mixture could be obtained at the downstream of the mixer. Our proposed no-contact ICEK micro-motor rotates as long as the DC electric field is being applied. This thesis develops a new understanding of several ICEK phenomena and applications related to heterogeneous particles. The 3D numerical model developed in this thesis along with the experimental studies are capable of describing the ICEK motion of a heterogeneous particle and is a considerable step to calculate the ICEK phenomena for real-world applications. This thesis, for the first time, experimentally visualized and verified the induced micro-vortices around conducting particles under applied DC electric field. The proposed ICEK micro-mixers, valve and motor can be used in various LOC devices and applications.
6

Induced-Charge Electrokinetic Motion of a Heterogeneous Particle and Its Corresponding Applications

Daghighi, Yasaman January 2013 (has links)
This thesis conducts numerical and experimental studies of the nonlinear electrokinetic motion of heterogeneous particles in microfluidic systems and their corresponding applications in laboratory-on-a-chip (LOC) systems. Induced-charge electrokinetic (ICEK) phenomena flow is generated by applying an external electric field to a conducting particle immersed in an aqueous solution. As a result of this field, micro-vortices form around the conducting particle. Using this phenomenon, many shortcomings of classical electrokinetics (e.g. poor mixing, leakage, back flow problem) can be improved. This thesis proposes and investigates a complete 3-D numerical multi-physics method to calculate the induced zeta potential on the conducting surface of a heterogeneous object. To model the ICEK motion of a heterogeneous particle in a DC electric field, the moving grid technique is used to conduct the particle-fluid simulation. It was numerically shown that the vortices form near the conducting surface of a particle. Both transitional and rotational motions of heterogeneous particles are investigated. A set of novel experiments are designed and conducted to investigate several aspecs of ICEK. It is demonstrated for the first time that four vortices form around a conducting sphere in contact with an aqueous solution while the DC electric field is applied. The motions of heterogeneous particles are experimentally studied. The speed of a heterogeneous particle is compared with the same size non-conducting particle under the same experimental conditions and it is shown that the heterogeneous particle moves significantly faster than the non-conducting particle. It is also shown that the micro-vortices on the conducting section of the heterogeneous particle act like an engine and push the particle to move faster. These experiments verify the results of our simulation studies. We introduce three applications for induced-charge electrokinetic phenomena in ths thesis: ICEK micro-valve, ICEK micro-mixer, and ICEK micro-motor, which can be used in microfluidics and lab-on-a-chip devises. This ICEK micro-valve significantly improves many shortcomings of other micro-valves reported in the literature (such as leakage, considerable dead volume and complicated fabrication processes). Our ICEK micro-mixers take the advantages of induced micro-vortices and boost the mixing process in a micro-channel. As a result well mixed homogeneous (100%) mixture could be obtained at the downstream of the mixer. Our proposed no-contact ICEK micro-motor rotates as long as the DC electric field is being applied. This thesis develops a new understanding of several ICEK phenomena and applications related to heterogeneous particles. The 3D numerical model developed in this thesis along with the experimental studies are capable of describing the ICEK motion of a heterogeneous particle and is a considerable step to calculate the ICEK phenomena for real-world applications. This thesis, for the first time, experimentally visualized and verified the induced micro-vortices around conducting particles under applied DC electric field. The proposed ICEK micro-mixers, valve and motor can be used in various LOC devices and applications.
7

Polymeric Amphiphilic Nanoparticles Via Intramolecular Chain Collapse Using 1-Functionalized Vinylbenzocyclobutenes

Storms, William Kenneth 10 September 2015 (has links)
No description available.
8

Greffage de couches organiques par électrochimie bipolaire / Grafting of organic layers via bipolar electrochemistry

Kumsapaya, Chawanwit 02 December 2014 (has links)
Dans cette thèse, le concept d’électrochimie bipolaire qui permet de réaliser des réactions électrochimiques par l’application d’un champ électrique, sur un objet conducteur placé dans une solution électrolytique sans aucun contact avec les électrodes, a été utilisé pour générer des objets Janus possédant une partie organique et une partie inorganique. Comme preuve de principe, des billes de carbone vitreux de taille micrométrique ont été modifiées de manière asymétrique par électrochimie bipolaire en réduisant un sel d’aryl diazonium. La couche organique ainsi greffée a pu être observée après interaction avec des nanoparticules d’or, ou des molécules fluorescentes. Les résultats ont montré que la moitié de la surface des billes a pu être modifiée de manière sélective et avec une grande précision. En ajustant le temps et/ou le champ électrique utilisé pour la réduction du sel de diazonium, la surface greffée peut être modulée. Ce concept a été généralisé à l’échelle nanométrique sur des nanotubes de carbone alignés verticalement. Ces nanotubes de carbone ont été préparés par un dépôt chimique en phase gazeuse en utilisant un template d’oxyde d’aluminium poreux. L’électrogreffage bipolaire d’une couche organique uniquement sur une extrémité des nanotubes et uniquement sur la face interne de ces tubes, a été possible en conservant les nanotubes piégés dans le template d’oxyde d’aluminium. Cette technique ouvre donc la voie d’applications dans le domaine des piles à combustible, des bio-capteurs, et également pour la délivrance contrôlée de médicaments. / In this thesis, the concept of bipolar electrochemistry, which allows carrying out electrochemical reactions on a free-standing conductive object in an electric field, was employed to generate Janus-type objects with a hybrid organic-inorganic composition. As a proof-of-concept micrometer-sized glassy carbon beads were modified asymmetrically via the bipolar electrochemical reduction of aryl diazonium salts. The grafted organic layers can be probed either with gold nanoparticles (AuNPs) or with fluorescent molecules. The results show that one-half sphere of the beads was modified selectively and with high precision. This concept was then generalized to vertically aligned carbon nonotubes (VACNTs). They were prepared via chemical vapor deposition using porous anodic aluminum oxide (AAO) as template. The bipolar electrografting of an organic layer onto the inner surface of the VACNTs was performed by using the tubes that were still embedded in the pores of the AAO membrane as the starting material. The grafted results can be visualized by coupling them with AuNPs. After the AAO removal, the results reveal a grafting of organic layers only at one end of the tubes along the inner wall. For both cases, fine tuning of the deposition time and/or the electric field used for the reduction of diazonium salts can control the geometric area of the grafting. This technique opens up applications of these objects in the fields of controlled drug delivery and storage.
9

Microfluidic-assisted synthesis and release properties of multi-domain polymer microparticles drug carriers / Synthèse de vecteurs microparticulaires par microfluidique et études de la libération à partir de microparticules polymères multi-domaines

Khan, Ikram Ullah 24 October 2014 (has links)
Les caractéristiques et les propriétés de libération de microparticules chargées de médicament dépendent de la nature des matériaux employés, des propriétés physicochimiques des microparticules, du choix de la méthode de production, et enfin des propriétés des molécules encapsulées. A l'inverse de la plupart des méthodes conventionnelles, les méthodes microfluidiques présentent l’avantage de bien mieux contrôler la génération de gouttelettes, leur taille et leur distribution de tailles. Ainsi des dispositifs microfluidiques à base de capillaires ont été développés pour obtenir des microbilles de polymère mais également des microparticules de type janus, coeur-écorce ou troyenne, toutes monodisperses en taille et chargées de médicament(s). Ces particules ont été produites à partir de solutions de monomère qui furent polymérisées par irradiations UV de telle sorte à garder intacte l'activité des molécules chargées. Ces dispositifs peuvent être assemblés dans un court laps de temps et un simple changement dans leur conception permet d’obtenir des morphologies de particules très différentes. Ces particules ont été développées dans le but de résoudre les problèmes rencontrés dans l’administration orale de médicaments. Par exemple les microbilles peuvent être utilisées pour délivrer des anti-inflammatoires non stéroïdiens de manière continue tandis que les particules Janus peuvent libérer, simultanément et sur le même site, deux principes actifs possédant des propriétés complètement différentes (solubilité, compatibilité) également de manière prolongée. Quant aux particules coeur-écorce, elles ont été conçues pour cibler la région du côlon de l'intestin humain, et y libérer simultanément deux médicaments. Les particules troyennes furent synthétisées à l’aide d’un procédé microfluidique semi-continu qui a permis une manipulation plus sécurisée des nanoparticules vectrices ainsi que la libération continue d’un médicament dans un liquide gastrique simulé. Chaque système a été entièrement caractérisé pour assurer l’invariance entre lots et la reproductibilité. En général, la libération des ingrédients actifs a pu être facilement contrôlée/ajustée par le réglage des paramètres opératoires et de matériaux tels que les débits des différentes phases, la nature et la concentration du médicament, des (co)monomères, des agents tensioactif et de réticulation, le pH du milieu de libération. Ces différents paramètres influencent les propriétés des microparticules telles que leur morphologie, forme, taille et densité de réticulation du réseau polymère. / Characteristics and release properties of drug loaded microparticles depend upon material used and choice of production method. Conversely to most of the conventional ones, microfluidic methods give an edge by improving the control over droplet generation, size and size distribution. Capillary-based microfluidic devices were successfully used to obtain monodisperse drug(s) loaded microbeads, janus, core-shell and trojan particles using UV initiated free radical polymerization while keeping activity of active loaded molecules. These devices can be assembled in a short period of time and a slight change in design gives completely different microparticles morphologies. These particles were developed with the aim to address different issues experienced in oral drug delivery. For instance microbeads can be used to deliver NASIDs in a sustained release manner while janus particles can release two APIs with completely different properties (solubility, compatibility) also in a sustained release manner. Core-shell particles were designed to target colonic region of human intestine for dual drug delivery. Trojan particles were synthesized in a new semi-continuous microfluidic process, thus improving nanoparticles safety handling and release in simulated gastric fluid. Each system was fully characterized to insure batch to batch consistency and reproducibility. In general, the release of active ingredients was controlled by tuning the operating and material parameters like phases flow rates, nature and concentration of drug, (co)monomers, surfactant and crosslinker, pH of release media with the result of different particle morphologies, sizes and shapes or matrix crosslinking density.

Page generated in 0.064 seconds