• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 9
  • 9
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Study of a New Ultra-wideband Pattern Diversity Antenna, for High-Gain Application

Rezazadeh, Navid 02 September 2014 (has links)
A new Ultra-Wideband (UWB) pattern diversity antenna is proposed, designed and investigated in this thesis. The antenna is capable of radiating in directive and omni-directional modes. Three different versions of the design are studied to show the performance for different applications. The first design consists of a single radiating element fed from two sides by coaxial probes over a shaped ground plane. In-phase excitation of the ports produces omni-directional radiation patterns and out-of-phase excitation results in directive radiation in the boresight of the antenna. The shape of the radiator is a disk, which is modified in geometry to improve the isolation of the ports. The antenna shows impedance bandwidth from 6.8 GHz to more than 15 GHz. The second design is a dual-element version of the same antenna to equalize the radiation patterns in the E- and H-planes. The antenna requires four ports and has an impedance bandwidth from 7.4 GHz to more than 15 GHz. A microstrip power divider is then included, in the third design, which in addition to decreasing the number of extra circuits for feeding, decreases the lower frequency to 4.5 GHz, without changing the radiation patterns significantly throughout the bandwidth. A prototype of this antenna was fabricated and measured, and the results are presented. In the fifth chapter, an electromagnetic polarization filter is designed for the single element UWB antenna, to reduce the cross-polarization level. 7 dB reduction in the maximum level of cross-polarization is achieved, throughout the frequency band 8 - 11 GHz. The following chapter is dedicated to the study and performance of the microstrip-fed UWB antenna, when used as a feed for prime-focus reflectors. It is shown that the designed antenna is capable of feeding the reflector with efficiency as high as 75%, and more than 60%, over a wide bandwidth of 5.5 - 9 GHz.
2

Compact MIMO/diversity antenna for portable and mobile UWB terminals,

See, Chan H., Ali, N.T., Atojoko, Achimugu A., Jan, N.M., Abd-Alhameed, Raed, Maki, O., Elkhazmi, Elmahdi A., McEwan, Neil J. January 2014 (has links)
No / A novel MIMO/diversity Planar Inverted-F antenna (PI FA) is presented for UWB applications. This antenna assembly is formed by two identical PIFAs, a T-shaped decoupling structure which connects the two PIFAs and a finite ground plane. The compact envelope dimension of this antenna is 50 × 90 × 7.5 mm3. Theoretical and experimental characteristics are illustrated for this antenna that fully covers an operating frequency band of 3.1 – 10.6 GHz for UWB applications, at a reflection coefficient and mutual coupling better than −10 dB and −20 dB respectively. An acceptable agreement is also obtained between computed and measured radiation patterns and gains. These characteristics demonstrate that the proposed antenna is an attractive candidate to provide pattern diversity in enhancing the channel capacity while operating in a rich scattering environment.
3

Compact Smart Antenna With Electronic Beam-Switching and Reconfigurable Polarizations.

Gu, C., Gao, S., Liu, H., Luo, Q., Loh, T-H., Sobhy, M., Li, J., Wei, G., Xu, J., Qin, F., Sanz-Izquierdo, B., Abd-Alhameed, Raed 10 1900 (has links)
yes / This paper presents a compact-size, low-cost smart antenna with electronically switchable radiation patterns, and reconfigurable polarizations. This antenna can be dynamically switched to realize three different polarizations including two orthogonal linear polarizations and one diagonally linear polarization. By closely placing several electronically reconfigurable parasitic elements around the driven antenna, the beam switching can be achieved in any of the three polarization states. In this design, a polarization reconfigurable square patch antenna with a simple feeding network is used as the driven element. The parasitic element is composed of a printed dipole with a PIN diode. Using different combinations of PIN diode ON/OFF states, the radiation pattern can be switched toward different directions to cover an angle range of 0◦ to 360◦ in the azimuth plane. The concept is confirmed by a series of measurements. This smart antenna has the advantages of compact size, low cost, low power consumption, reconfigurable polarizations, and beams.
4

Wideband Reconfigurable Vector Antenna for 3-D Direction Finding Application

Duplouy, Johan 14 January 2019 (has links) (PDF)
Direction finding plays a crucial role in various civilian and military applications, related to either radionavigation or radiolocation. Most of the direction finding antennas operate over a wide frequency band, but only a minority of them enable the direction of arrival estimation of an incoming electromagnetic field over a 3-D angular coverage (i.e., estimation of both azimuth and elevation angles). An original approach to obtain a 3-D angular coverage consists in measuring the six components of the incident electromagnetic field through a so-called vector antenna. The aim of this Ph.D. is to design a passive, compact and wideband vector antenna in order to cover a maximum of applications. Two vector antennas have been designed, manufactured and experimentally characterized. Unlike conventional topology, they enable the measurement of the components of an incoming electromagnetic field thanks to the radiation pattern reconfigurability of an original arrangement of Vivaldi antennas. The first prototype is mounted over a finite metallic support and enables the direction of arrival estimation of vertically-polarized electromagnetic fields over a 1.69:1 bandwidth while the second one can be used regardless of the polarization of the incoming electromagnetic fields over a 8:1 bandwidth. Moreover, the direction finding performances of these vector antennas have been improved in terms of estimation accuracy, sensitivity, robustness to angular ambiguity and polarization mismatch by synthesizing new radiation patterns in the estimation process. A method based on the Cramer-Rao lower bound has been proposed to select efficiently and rapidly the additional radiation patterns
5

Modelling and design of compact wideband and ultra-wideband antennas for wireless communications : simulation and measurement of planer inverted F antennas (PIFAs) for contemporary mobile terminal applications, and investigations of frequency range and radiation performance of UWB antennas with design optimisation using parametric studies

Hraga, Hmeda Ibrahim January 2013 (has links)
The rapidly growing demand for UWB as high data rates wireless communications technology, since the Federal Communications Commission (FCC) allocated the bandwidth of UWB from 3.1GHz to 10.6 GHz. Antenna also plays an essential role in UWB system. However, there are some difficulties in designing UWB antenna as compared to narrowband antenna. The primary requirement of UWB antennas is be able to operate over frequencies released by the FCC. Moreover, the satisfaction of radiation properties and good time domain performance over the entire frequency range are also necessary. In this thesis, designing and analysing printed crescent shape monopole antenna, Planar Inverted F-L Antenna (PIFLA) and Planar Inverted FF Antenna (PIFFA) are focused. A Planar Inverted FF Antenna (PIFFA) can be created to reduce the potential for interference between a UWB system and other communications protocols by using spiral slot. The antennas exhibits broadside directional pattern. The performances such as return loss, radiation pattern and current distribution of the UWB antennas are extensively investigated and carried out. All the results have been demonstrated using simulation and experimentally whereby all results satisfy the performance under - 10dB point in the bandwidth of UWB. In addition the miniaturization of MIMO/diversity Planar Inverted-F antenna (PIFA) which is suitable for pattern diversity in UWB applications is presented. This antenna assembly is formed by two identical PIFAs, a T-shaped decoupling structure which connects the two PIFAs and a finite ground plane with a total compact envelope dimension of 50 x 90 x 7.5mm³. The radiation performance of the proposed MIMO antenna was quite encouraging and provided an acceptable agreement between the computed and measured envelope correlation coefficient and channel capacity loss.
6

Investigating and Enhancing Performance of Multiple Antenna Systems in Compact MIMO/Diversity Terminals

Zhang, Shuai January 2013 (has links)
Today, owners of small communicating device are interested in transmitting or receiving various multimedia data. By increasing the number of antennas at the transmitter and/or the receiver side of the wireless link, the diversity/Multiple-Input Multiple-Output (MIMO) techniques can increase wireless channel capacity without the need for additional power or spectrum in rich scattering environments. However, due to the limited space of small mobile devices, the correlation coefficients between MIMO antenna elements are very high and the total efficiencies of MIMO elements degrade severely. Furthermore, the human body causes high losses on electromagnetic wave. During the applications, the presence of users may result in the significant reduction of the antenna total efficiencies and highly affects the correlations of MIMO antenna systems. The aims of this thesis are to investigate and enhance the MIMO/diversity performance of multiple antenna systems in the free space and the presence of users. The background and theory of multiple antenna systems are introduced briefly first. Several figures of merits are provided and discussed to evaluate the multiple antenna systems. The decoupling techniques are investigated in the multiple antenna systems operating at the higher frequencies (above 1.7 GHz) and with high radiation efficiency. The single, dual and wide band isolation enhancements are realized through the half-wavelength decoupling slot, quarter-wavelength decoupling slot with T-shaped impedance transformer, tree-like parasitic element with multiple resonances, as well as the different polarizations and radiation patterns of multiple antennas. In the lower bands (lower than 960 MHz), due to the low radiation efficiency and strong chassis mode, the work mainly focused on how to directly reduce the correlations and enlarge the total efficiency. A new mode of mutual scattering mode is introduced. By increasing the Q factors, the radiation patterns of multiple antennas are separated automatically to reduce the correlations. With the inter-element distance larger than a certain distance, a higher Q factor also improved the total efficiency apart from the low correlation. A wideband LTE MIMO antenna with multiple resonances is proposed in mobile terminals. The high Q factors required for the low correlation and high efficiencies in mutual scattering mode is reduced with another mode of diagonal antenna-chassis mode. Hence, the bandwidth of wideband LTE MIMO antenna with multiple resonances mentioned above can be further enlarged while maintaining the good MIMO/diversity performance. The user effects are studied in different MIMO antenna types, chassis lengths, frequencies, port phases and operating modes. Utilizing these usefully information, an adaptive quad-element MAS has been proposed to reduce the user effects and the some geranial rules not limited to the designed MAS have also been given. / <p>QC 20130121</p> / EU Erasmus Mundus External Cooperation Window TANDEM
7

Wideband reconfigurable vector antenna for 3-D direction finding application / Antenne Vectorielle Reconfigurable et Large-Bande appliquée à la Radiogoniométrie 3-D

Duplouy, Johan 14 January 2019 (has links)
La radiogoniométrie joue un rôle crucial dans diverses applications, aussi bien civiles que militaires, liées soit à la radionavigation ou à la radiolocalisation. La plupart des antennes de goniométrie opèrent sur une large bande de fréquences, mais seule une minorité d’entre elles permettent l'estimation de la direction d’arrivée d’un champ électromagnétique incident sur une couverture angulaire 3-D (c.-à-d., l’estimation à la fois des angles d’azimut et d’élévation). Une approche originale permettant d’obtenir une couverture angulaire 3-D consiste à mesurer les six composantes d’un champ électromagnétique incident à l’aide d’une antenne dite vectorielle. L'objectif de cette thèse est de concevoir une antenne vectorielle passive, compacte et large bande afin de couvrir un maximum d'applications. Deux antennes vectorielles ont été conçues, fabriquées et caractérisées expérimentalement. \`A la différence d'une topologie conventionnelle, elles permettent de mesurer les composantes d'un champ électromagnétique incident grâce à la reconfigurabilité en diagramme de rayonnement d'un arrangement original d'antennes Vivaldi. Le premier prototype est monté sur un support métallique fini et permet l'estimation de la direction d'arrivée de champs électromagnétiques polarisés verticalement sur une bande passante de 1.69:1 tandis que le second peut être utilisé quelle que soit la polarisation des champs électromagnétiques incidents sur une bande passante de 8:1. De plus, les performances de goniométrie de ces antennes vectorielles ont été améliorées du point de vue de la précision, de la sensibilité, de la robustesse face aux ambiguïtés angulaires et aux erreurs de dépolarisation en synthétisant de nouveaux diagrammes de rayonnement dans le processus d'estimation. Une méthode basée sur la borne de Cramer-Rao a été élaborée afin de sélectionner efficacement et rapidement les diagrammes de rayonnement supplémentaires. / Direction finding plays a crucial role in various civilian and military applications, related to either radionavigation or radiolocation. Most of the direction finding antennas operate over a wide frequency band, but only a minority of them enable the direction of arrival estimation of an incoming electromagnetic field over a 3-D angular coverage (i.e., estimation of both azimuth and elevation angles). An original approach to obtain a 3-D angular coverage consists in measuring the six components of the incident electromagnetic field through a so-called vector antenna. The aim of this Ph.D. is to design a passive, compact and wideband vector antenna in order to cover a maximum of applications. Two vector antennas have been designed, manufactured and experimentally characterized. Unlike conventional topology, they enable the measurement of the components of an incoming electromagnetic field thanks to the radiation pattern reconfigurability of an original arrangement of Vivaldi antennas. The first prototype is mounted over a finite metallic support and enables the direction of arrival estimation of vertically-polarized electromagnetic fields over a 1.69:1 bandwidth while the second one can be used regardless of the polarization of the incoming electromagnetic fields over a 8:1 bandwidth. Moreover, the direction finding performances of these vector antennas have been improved in terms of estimation accuracy, sensitivity, robustness to angular ambiguity and polarization mismatch by synthesizing new radiation patterns in the estimation process. A method based on the Cramer-Rao lower bound has been proposed to select efficiently and rapidly the additional radiation patterns
8

Modelling and design of compact wideband and ultra-wideband antennas for wireless communications. Simulation and measurement of planer inverted F antennas (PIFAs) for contemporary mobile terminal applications, and investigations of frequency range and radiation performance of UWB antennas with design optimisation using parametric studies.

Hraga, Hmeda I. January 2013 (has links)
The rapidly growing demand for UWB as high data rates wireless communications technology, since the Federal Communications Commission (FCC) allocated the bandwidth of UWB from 3.1GHz to 10.6 GHz. Antenna also plays an essential role in UWB system. However, there are some difficulties in designing UWB antenna as compared to narrowband antenna. The primary requirement of UWB antennas is be able to operate over frequencies released by the FCC. Moreover, the satisfaction of radiation properties and good time domain performance over the entire frequency range are also necessary. In this thesis, designing and analysing printed crescent shape monopole antenna, Planar Inverted F-L Antenna (PIFLA) and Planar Inverted FF Antenna (PIFFA) are focused. A Planar Inverted FF Antenna (PIFFA) can be created to reduce the potential for interference between a UWB system and other communications protocols by using spiral slot. The antennas exhibits broadside directional pattern. The performances such as return loss, radiation pattern and current distribution of the UWB antennas are extensively investigated and carried out. All the results have been demonstrated using simulation and experimentally whereby all results satisfy the performance under - 10dB point in the bandwidth of UWB. In addition the miniaturization of MIMO/diversity Planar Inverted-F antenna (PIFA) which is suitable for pattern diversity in UWB applications is presented. This antenna assembly is formed by two identical PIFAs, a T-shaped decoupling structure which connects the two PIFAs and a finite ground plane with a total compact envelope dimension of 50 ¿ 90 ¿ 7.5mm3. The radiation performance of the proposed MIMO antenna was quite encouraging and provided an acceptable agreement between the computed and measured envelope correlation coefficient and channel capacity loss. / General Secretariat of Education and Scientific Research Libya
9

Investigation and design of 5G antennas for future smartphone applications

Ojaroudi Parchin, Naser January 2020 (has links)
The fifth-generation (5G) wireless network has received a lot of attention from both academia and industry with many reported efforts. Multiple-input-multiple-output (MIMO) is the most promising wireless access technology for next-generation networks to provide high spectral and energy efficiency. For handheld devices such as smartphones, 2×2 MIMO antennas are currently employed in 4G systems and it is expected to employ a larger number of elements for 5G mobile terminals. Placing multiple antennas in the limited space of a smartphone PCB poses a significant challenge. Therefore, a new design technique using dual-polarized antenna resonators for 8×8 MIMO configuration is proposed for sub 6 GHz 5G applications. The proposed MIMO configuration could improve the channel capacity, diversity function, and multiplexing gain of the smartphone antenna system which makes it suitable for 5G applications. Different types of new and compact diversity MIMO antennas with Patch, Slot, and Planar inverted F antenna (PIFA) resonators are studied for different candidate bands of sub 6 GHz spectrum such as 2.6, 3.6, and 5.8 GHz. Unlike the reported MIMO antennas, the proposed designs provide full radiation coverage and polarization diversity with sufficient gain and efficiency values supporting different sides of the mainboard. Apart from the sub 6 GHz frequencies, 5G devices are also expected to support the higher bands at the centimeter/millimeter-wave spectrums. Compact antennas can be employed at different portions of a smartphone board to form linear phased arrays. Here, we propose new linear phased arrays with compact elements such as Dipole and Quasi Yagi resonators for 5G smartphones. Compared with the recently reported designs, the proposed phased arrays exhibit satisfactory features such as compact size, wide beam steering, broad bandwidth, end-fire radiation, high gain, and efficiency characteristics. The proposed 5G antennas can provide single-band, multi-band, and broad-band characteristics with reduced mutual coupling function. The fundamental characteristics of the 5G antennas are examined using both simulations and measurements and good agreement is observed. Furthermore, due to compact size and better placement of elements, quite good characteristics are observed in the presence of the user and the smartphone components. These advantages make the proposed antennas highly suitable for use in 5G smartphone applications. / European Union Horizon 2020 Research and Innovation Programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424

Page generated in 0.0852 seconds