Spelling suggestions: "subject:"pebble"" "subject:"hebble""
31 |
Properties of graphitic compositesMagampa, Philemon Podile January 2013 (has links)
The Pebble Bed Modular Reactor (PBMR) is a high temperature graphite-moderated nuclear reactor that uses helium as a coolant. The triple coated (TRISO) particles contain enriched uranium oxide fuel which is coated with layers of various forms of pyrolytic carbon and silicon carbide. The TRISO particles are further embedded in the matrix of spherical graphite pebbles. The graphite matrix is a composite moulded from a compound containing natural flake graphite (64 wt.%), synthetic graphite (16 wt.%) and a phenolic resin binder (20 wt.%) heated to 1800 °C in inert atmosphere. The graphitic composite provides structural integrity, encasement and act as a moderator material. In this work, low density model graphite composites similar to those used in nuclear applications as encasement material in fuel pebbles were made by uniaxial cold compression moulding. The graphitic composites contained various ratios of natural flake graphite and synthetic graphite at fixed phenolic novolac resin binder content of 20 wt.% (green state). The fabrication process employed entails mixing the graphite powders, followed by addition of methanol phenolic resin solution to the graphite powder mix, drying, grinding, milling and sieving; and finally compression moulding in a stainless steel die at 13 MPa using a hydraulic press. The green moulded disc specimens were then carbonized at 900 °C in nitrogen atmosphere to remove volatiles followed by annealing at 1800 °C in helium atmosphere. The annealing step diminishes structural defects and result in densification of the composites.
The microstructure of fabricated graphitic composites was characterized using various techniques. Particle Size Distributions determined using Laser diffraction showed that the inclusion of the binder leads to agglomeration. The composite powders had larger mean particle sizes than the raw graphite powders showing the binding effect of the novolac phenolic resin. X-ray diffraction studies showed that the graphitic composites had a hexagonal crystal structure after annealing. Raman spectroscopy revealed the presence of the structurally disordered phase derived from the resin carbon (indicated by the pronounced D-band in the Raman spectra). XRD and Raman observations were consistent with literature and gave results supporting existing knowledge base. Optical microscopy revealed a flake-like microstructure for composites containing natural graphite and needle-coke like particles for composites containing mainly synthetic graphite. Optical microscopy confirmed that the effect of the manufacturing route employed here was to align the particles in the direction perpendicular to the compression moulding direction. As a result, the graphitic composites exhibited anisotropic property behavior.
The bulk density of the composites increased with the increase in the natural graphite content due to compactability of natural flakes in the manufacturing route. Thermogravimetric analysis studies on the composites showed that they were stable in air to 650 °C. Composites containing mainly synthetic graphite were thermally more stable in air compared to their natural graphite counterparts. The linear coefficients of thermal expansion of the composites were measured using thermomechanical analysis (20-600 °C). In the moulding direction, the average CTE (αP) values were in the range (5-9) × 10-6 K-1 and increased with increment in the natural graphite content in the composite. In the direction perpendicular to moulding direction, the average CTE (αN) values were in the range (1.7-2.1) × 10-6 K-1 showing that the expansion was similar or constant in this direction. Therefore an anisotropic expansion ratio, i.e. αP:αN, of about 3 was observed in the composites. This anisotropy is attributable to the alignment of the filler particles in the manufacturing route. The thermal conductivity of the annealed composites were measured in the pressing direction from 100 to 1000 °C and the values ranged from 19 to 30 W m-1 K-1. Anisotropy was also observed as far as strength was concerned. A composite containing 64:16:20 wt.% ratio had the best mechanical properties, high thermal conductivity and slightly high expansion coefficient. This work demonstrates the complimentary properties of the graphite fillers in the composites. It also reports for the first time, data on the effect of variation of the filler graphites on microstructure and properties of model low density compression moulded graphitic composites. / Thesis (PhD)--University of Pretoria, 2013. / gm2014 / Chemistry / unrestricted
|
32 |
Överraskningens orsaker : En flerfallsstudie om vad som orsakar överraskning på taktisk beslutsnivåJönsson, Fredrik January 2018 (has links)
Military theories regarding surprise has a conceptual way of being described which may influence the effect that surprise actually has on a specific command level. Without sufficient explanations there might be unclear reasons for the conversion of these theories into practice. The existing research shows an increased possibility of surprise within the strategical command level and how to achieve it. It also shows the absence of research regarding what causes surprise on tactical command level, even if some theories describe surprise as being more effective at that level. Special operations can be included within the tactical command level and may offer an explanation. This case study examines which causes may lead to surprise on a tactical command level by analyzing descriptions of special operations within the conduct of regular warfare. With theoretical and empirical references, surprise was achieved in both of the selected cases. The results of the study can be divided in to two categories: the direct and the indirect causes. The categorization gives a further explanation in how to better understand surprise within a specific command level. The study contributes to the existing research by revealing a better understanding for commanders within a tactical command level in how to achieve surprise.
|
33 |
The Nature and Origin of Pebble Dikes and Associated Alteration: Tintic Mining District (Ag-Pb-Zn), UtahJohnson, Douglas M 01 November 2014 (has links) (PDF)
In many ore deposits throughout the world, brecciation often accompanies or occurs in association with mineralization (Sillitoe, 1985). Such is the case in the Tintic Mining District (Ag-Pb-Zn) of north-central Utah, where unique breccia features called pebble dikes occur alongside significant mineralization. Pebble dikes are tabular bodies of breccia, which consist of angular to rounded clasts of quartzite, shale, carbonate, and minor igneous rock cemented in a fine-grained clastic matrix. All clasts now lie above or adjacent to corresponding source rocks. Dikes are thin, typically less than 0.3 m wide to as much as 1 m, and can exceed 100 m in length. The average of the largest clast sizes is less than 3 cm but correlates positively with pebble dike width. Contacts are sharp and an envelope of fine breccia surrounds roughly half of the dikes. Pebble dikes are mostly hosted in an Eocene rhyolite lava flow, which displays argillic to silicic alteration when in contact with a pebble dike, but are also hosted in an assortment of folded Paleozoic sedimentary rocks. The dikes show a strong northeast trend in orientation, following a regional fabric of northeast-trending strike-slip and oblique-slip faults.The formation of pebble dikes has been historically attributed to the intrusion of the Silver City Stock, the Tintic District's main productive intrusion (Morris and Lovering, 1979; Hildreth and Hannah, 1996; Kim, 1997; Krahulec and Briggs, 2006). However, pebble dikes are spatially associated with a previously unrecognized porphyritic unit, informally named the porphyry of North Lily, which is texturally, mineralogically, and chemically distinct from the Silver City Stock, and like pebble dikes, is emplaced in northeast-trending plugs and dikes. Pebble dikes show a strong spatial correlation to outcrops of the porphyry of North Lily. Additionally, clasts of the porphyry of North Lily have been found in pebble dikes, while pebble dike quartzite clasts have been found as xenoliths in the porphyry of North Lily. These similarities and interactions suggest simultaneous formation. Low-grade alteration associated with pebble dikes indicates that they formed at elevated temperatures (<150°C). Stable isotope characteristics of rhyolite altered during the emplacement of pebble dikes suggests that the dikes formed in the presence of heated groundwater, with little to no magmatic water association. The overall physical, spatial, and chemical characteristics of pebble dikes of the Tintic Mining District suggest that they formed by the mobilization of breccia in the explosive escape of groundwater that had been heated by the porphyry of North Lily. This escape occurred along pre-existing northeast-trending faults and fractures. Pebble dikes then became pathways for later ore fluids, easing the creation of the district's abundant mineral resources.
|
34 |
Analysis of Strain, Shape, and Orientation of the Deformed Pebbles in the Seine River Area, OntarioHsu, Mao-Yang 02 1900 (has links)
<p> Detailed mapping was carried out to provide reliable data concerning the geologic structure which is relevant to the original pebble fabrics. </p> <p> Mathematical determination of an ellipsoidal shape from any two cross-sections and its application to the study of deformed ellipsoidal particles are developed and discussed. </p> <p> Final pebble fabric resulting from special coaxial superpositions of the tectonic strain ellipsoid upon originally ellipsoidal pebbles, is employed to determine the strain ratio and the original pebble orientation and shape. </p> <p> Some general techniques are outlined for different cases to determine the strain ellipsoid and the original shape of deformed pebbles. Weighted vector mean is introduced in the orientation analysis of deformed pebbles. The concept of average axial ratio in the case of unextractable pebbles is examined. </p> <p> Pebble size, pebble ductility ratio, shortening strain, and strain rate are all calculated and discussed. Finally, selective veins developing in the less-deformed pebbles are subjected to detailed orientation and petrofabric analyses. </p> / Thesis / Doctor of Philosophy (PhD)
|
35 |
INVESTIGATION ON USING NEUTRON COUNTING TECHNIQUES FOR ONLINE BURNUP MONITORING OF PEBBLE BED REACTOR FUELSZHAO, ZHONGXIANG January 2004 (has links)
No description available.
|
36 |
Indirect measurement of reactor fuel temperatureOswald, Elbrecht 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Regulators and designers of nuclear reactors regard knowledge of the pebble fuel
temperature as important, due to the role that it plays in maintaining structural
integrity and the production of neutrons. By using special fuel assemblies fitted
with measuring equipment it is possible to measure the fuel temperature in
stationary fuel reactors. This, however, is not possible in the pebble bed modular
reactor due to its dynamic core. Designers of the pebble bed modular reactor
have reserved special inspection channel borings inside the center reflector for
fuel temperature measurement. By means of optical fibers and interferometry,
the temperature can be measured inside such a channel. Currently the only way
to control the fuel surface and core temperature is by measuring the gas inlet
and outlet temperatures.
This thesis attempts to determine the pebble temperature by measuring the
temperature in a reflector channel. This is done by constructing an electrically
heated pebble bed experimental setup simulating a cutout section of a pebble
bed modular reactor core. An additional computational fluid dynamics simulation
of the experimental setup was also performed. This thesis also attempts to
determine if there is a measureable temperature peak that can indicate where a
pebble was in contact with the reflector surface. This could then be used in
future studies to determine the pebble fuel velocity as it moves down the reactor
core.
The computational fluid dynamics results were validated by experimental
measurements. In the computational fluid dynamics model and experimental
setup, it was found that there was indeed a measureable temperature difference
on the temperature gradient along the reflector wall. The heat being conducted
away from the pebble through the contact area can explain this. These
differences were only observed when the channel was moved closer to the pebbles and it is therefore advised that some redesigning of the channel should
be done if the in-core temperature is to be accurately interpreted by the
designers at PBMR (Pty) Ltd. / AFRIKAANSE OPSOMMING: Reguleerders en ontwerpers van kern reaktore beskou die kennis van die korrel
brandstof temperatuur as belangrik. Dit is weens die rol wat die brandstof
temperatuur speel met die behoud van strukturele integriteit en die produksie
van neutrone binne-in die reaktor. Met behulp van spesiale brandstof montasies
toegerus met die meetings instrumentasie, is dit moontlik om die brandstof
temperatuur in stilstaande brandstof reaktore te meet. Dit is egter nie moontlik
in die korrel bed modulêre reaktor nie, as gevolg van sy dinamiese kern.
Ontwerpers van die korrel bed modulêre reaktor het spesiale kanale in die
binnekant van die middel reflektor vir brandstof temperatuur meeting
gereseveer. Deur middel van optiese vesel en interferometrie, kan die
temperatuur binne so 'n kanaal gemeet word. Tans is die enigste manier om die
brandstof-oppervlak temperatuur te berekern, net moontlik deur gebruik te
maak van die gemete gas inlaat-en uitlaat temperature van die reaktor.
Hierdie tesis poog om vas te stel of die korrel brandstof temperatuur deur die
meet van die oppervlak temperatuur in 'n reflektor-kanaal bepaal kan word. Dit
word gedoen deur 'n elektriese verhitte korrel bed eksperimentele opstelling te
bou wat 'n gedeelte van 'n korrel bed modulêre reaktor simuleer. 'n Bykomende
numeriese simulasie van die eksperimentele opstelling was ook uitgevoer.
Hierdie werk het ook probeer om vas te stel of daar 'n meetbare temperatuur
piek op die temperatuur profiel aandui kan word waar 'n korrel in kontak is met
die reflektor se oppervlak. Dit kan dan in toekomstige studies gebruik word om
te bepaal wat die korrel brandstof spoed was soos dit in die reaktor beweeg.
Die numerise simulasie uitslae was deur eksperimentele metings bevestig. In die
numerise simulasie model en die eksperimentele opstelling, is daar gevind dat
daar inderdaad 'n meetbare temperatuur verskil op die temperatuurgradiënt
teen die reflektor oppervlak is. Dit kan verduidelik word as gevolg van die hitte wat weg van die korrel gelei word deur middel van die kontak area. Hierdie
verskille was slegs waargeneem wanneer die kanaal nader aan die korrels geskuif
is en dit word as n aanbeveling aan PBMR (Pty) Ltd gemaak om sommige
herontwerpe aan die kanaal te doen indien die in-kerntemperatuur gemeet wil
word en akkuraat geinterpreteer wil word.
|
37 |
Introductory investigation of the Ranque-Hilsch vortex tube as a particle separation device for the PBMRBurger, Anja 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: The Pebble Bed Modular Reactor (PBMR) is a Generation IV graphite-moderated helium
cooled nuclear reactor which is being developed in South Africa. The PBMR design is
based on the German Arbeitsgemeinschaft Versuchreaktor (AVR). The AVR was
decommissioned in December 1988 due to operational and safety problems. The PBMR
project has put a lot of emphasis on safety and therefore all safety issues relating to the
AVR have to be addressed before this technology can be implemented. After the
decommissioning of the AVR plant, technicians found radioactive isotopes of cesium
55Cs137, 55Cs134, silver 44Ag110 and strontium 38Sr90 as well as graphite dust in the primary
coolant loop of the reactor. These isotopes as well as the graphite dust have to be
removed from the helium coolant stream because it can be potentially harmful to
equipment, personnel and the general public. The main objective of this thesis is
therefore to investigate a separation method for removing the graphite dust (and with it
the radioactive isotopes) from the helium coolant stream and also test this method
under different operating conditions and geometrical configurations to determine its
dust separation efficacy. The device chosen to investigate is the Ranque-Hilsch vortex
tube.
The Ranque-Hilsch vortex tube (RHVT) is a simple device having no moving parts that
produces a hot and cold air stream simultaneously at its two ends from a compressed air
source. The vortex generated by the vortex generator located at the inlet of the RHVT
causes strongly rotating flows similar in speed to that of a gas centrifuge. The gas
centrifuge is used for isotope separation. The RHVT, in theory, can therefore be
implemented to separate the graphite/silver isotopes from the helium coolant with the
added benefit of either cooling or heating the coolant and was thus selected as the
separation technique to be tested experimentally.
The dust separation efficiency of the RHVT was tested experimentally using different
grades of graphite dust, different fluids, various inlet volumetric flow rates and volume
fractions and different RHVT geometries. The experimental results showed that the
RHVT has a dust separation efficiency of more than 85 %. A regression analysis was also done with the experimental data to obtain a correlation between the different operating
conditions (such as volumetric flow rate) and the dust separation efficiency that can be
used to predict the dust efficiency under different operating and geometric conditions
(such as the PBMR environment).
An analytical model is also presented to describe the ‘temperature separation’
phenomenon in the RHVT, using basic thermo-physical principals to gain a better
understanding of how the RHVT works. A CFD analysis was also attempted to
supplement the analytical analysis but the solution did not converge and therefore only
the preliminary results of the analysis are discussed. / AFRIKAANSE OPSOMMING: Die “Pebble Bed Modular Reactor” (PBMR) is `n vierde generasie grafiet gemodereede
en helium verkoelde reaktor wat in Suid-Afrika ontwikkel word. Die PBMR ontwerp is
gebaseer op the Duitse Arbeitsgemeinschaft Versuchreaktor (AVR) wat buite werking
gestel is in Desember 1988 as gevolg van operasionele en veiligheidsprobleme. Die
PBMR projek lê baie klem op veiligheid en daarom moet alle veiligheidskwessies van die
AVR eers aangespreek word voor die tegnologie geimplementeer kan word. Nadat die
AVR buite werking gestel is, het AVR tegnisie radioaktiewe isotope van cesium 55Cs137,
55Cs134, silwer 44Ag110 en strontium 38Sr90 asook grafiet stof in die primêre stroomkring
van die reaktor gevind. Hierdie isotope sowel as die grafiet stof moet uit die helium
verkoelingsmiddel in die primere stroomkring van die reaktor verwyder word aangesien
dit dalk skadelik kan wees vir toerusting, personeel en die publiek. Die hoofdoelwit van
hierdie tesis is dus om `n skeidingstekniek te ondersoek wat die stof (en dus ook die
radioaktiewe isotope) uit die helium verkoelingsmiddel kan verwyder. Hierdie tegniek
moet dan getoets word onder verskillende operasionele en geometriese toestande om
die skeidingsbenuttingsgraad te bepaal. Die toestel wat gekies is om ondersoek te word
is die “Ranque-Hilsch Vortex Tube”.
Die “Ranque-Hisch Vortex Tube” (RHVT) is a eenvoudige uitvindsel wat geen bewegende
parte bevat nie en wat warm en koue lug gelyktydig produseer vanaf `n saamgepersde
lugbron. ‘n Baie sterk roteerende vloei word gegenereer in die RHVT wat dieselfde
snelhede bereik as die lug in `n gas-sentrifugeerder. Die gas- sentrifugeerder word
gebruik as `n isotoopskeidingsapparaat. In teorie kan die RHVT dus ook gebruik word om
partikels te skei as gevolg van die sterk roteerende vloei, met die voordeel dat dit ook
die lug kan verhit en verkoel. As gevolg van hierde redes is die RHVT gekies as die
skeidingstegniek om te ondersoek en dus experimenteel te toets.
Die benuttingsgraad van die RHVT se vermoë om die grafiet stof van die lug te skei was
gevolglik eksperimenteel getoets deur gebruik te maak van verskillende gehaltes grafiet
stof, verskillende vloeistowwe (lug of helium), verskillende inlaat volumevloeitempos en
volume fraksies en RHVT geometrieë. Die experimentele resultate het getoon dat die RHVT `n benuttingsgraad van meer as 85 % het. `n Regressie analise was ook gedoen
met die eksperimentele data om `n korrelasie tussen die verskillende opersionele
toestande (soos volumevloeitempo) en die stof skeiding benuttingsgraad te kry. Hierdie
korrelasie kan dan gebruik word om die stofskeidingsbenuttingsgraad onder ander
operasionele en geometriese omstandighede, soos die PBMR omgewing, te voorspel.
`n Analitiese model word ook voorgestel om die “temperatuur-skeidings” meganisme in
die RHVT te verduidelik, met die hulp van basiese termo-fisiese beginsels, om beter te
verstaan hoe dit werk. Daar was ook gepoog om `n CFD analise te doen wat die
analitiese model kon aanvul, maar die numeriese oplossing het nie gekonvergeer nie en
dus word net die voorlopige resultate van dié analise bespreek.
|
38 |
Space in Proof ComplexityVinyals, Marc January 2017 (has links)
ropositional proof complexity is the study of the resources that are needed to prove formulas in propositional logic. In this thesis we are concerned with the size and space of proofs, and in particular with the latter. Different approaches to reasoning are captured by corresponding proof systems. The simplest and most well studied proof system is resolution, and we try to get our understanding of other proof systems closer to that of resolution. In resolution we can prove a space lower bound just by showing that any proof must have a large clause. We prove a similar relation between resolution width and polynomial calculus space that lets us derive space lower bounds, and we use it to separate degree and space. For cutting planes we show length-space trade-offs. This is, there are formulas that have a proof in small space and a proof in small length, but there is no proof that can optimize both measures at the same time. We introduce a new measure of space, cumulative space, that accounts for the space used throughout a proof rather than only its maximum. This is exploratory work, but we can also prove new results for the usual space measure. We define a new proof system that aims to capture the power of current SAT solvers, and we show a landscape of length-space trade-offs comparable to those in resolution. To prove these results we build and use tools from other areas of computational complexity. One area is pebble games, very simple computational models that are useful for modelling space. In addition to results with applications to proof complexity, we show that pebble game cost is PSPACE-hard to approximate. Another area is communication complexity, the study of the amount of communication that is needed to solve a problem when its description is shared by multiple parties. We prove a simulation theorem that relates the query complexity of a function with the communication complexity of a composed function. / <p>QC 20170509</p>
|
39 |
Numerical simulation of flow distribution for pebble bed high temperature gas cooled reactorsYesilyurt, Gokhan 30 September 2004 (has links)
The premise of the work presented here is to use a common analytical tool,
Computational Fluid dynamics (CFD), along with a difference turbulence models. Eddy
viscosity models as well as state-of-the-art Large Eddy Simulation (LES) were used to
study the flow past bluff bodies. A suitable CFD code (CFX5.6b) was selected and
implemented.
Simulation of turbulent transport for the gas through the gaps of the randomly
distributed spherical fuel elements (pebbles) was performed. Although there are a
number of numerical studies () on flows around spherical bodies, none of them use the
necessary turbulence models that are required to simulate flow where strong separation
exists. With the development of high performance computers built for applications that
require high CPU time and memory; numerical simulation becomes one of the more
effective approaches for such investigations and LES type of turbulence models can be
used more effectively.
Since there are objects that are touching each other in the present study, a special
approach was applied at the stage of building computational domain. This is supposed to
be a considerable improvement for CFD applications. Zero thickness was achieved
between the pebbles in which fission reaction takes place.
Since there is a strong pressure gradient as a result of high Reynolds Number on
the computational domain, which strongly affects the boundary layer behavior, heat
transfer in both laminar and turbulent flows varies noticeably. Therefore, noncircular
curved flows as in the pebble-bed situatio n, in detailed local sense, is interesting to be
investigated.
Since a compromise is needed between accuracy of results and time/cost of effort
in acquiring the results numerically, selection of turbulence model should be done
carefully. Resolving all the scales of a turbulent flow is too costly, while employing
highly empirical turbulence models to complex problems could give inaccurate
simulation results. The Large Eddy Simulation (LES) method would achieve the
requirements to obtain a reasonable result. In LES, the large scales in the flow are solved
and the small scales are modeled.
Eddy viscosity and Reynolds stress models were also be used to investigate the
applicability of these models for this kind of flow past bluff bodies at high Re numbers.
|
40 |
Simulation of the irradiation behaviour of the PBMR fuel in the SAFARI-1 reactor / B.M. MakgopaMakgopa, Bessie Mmakgoto January 2009 (has links)
Irradiation experiments for the pebble bed modular reactor PBMR fuel (coated fuel particles and pebble
fuel) are planned at the South African First Atomic Reactor Installation (SAFARI-1). The experiments
are conducted to investigate the behavior of the fuel under normal operating and accelerated/accident
simulating conditions because the safe operation of the reactor relies on the integrity of the fuel for
retention of radioactivity.
For fuel irradiation experiments, the accurate knowledge and analysis of the neutron spectrum of the
irradiation facility is required. In addition to knowledge of the neutron spectrum in the irradiation facility,
power distributions and knowledge of nuclear heating values has to be acquired. The SAFARI-1 reactor
boosts operating fluid temperatures of about 300 K. On the contrary, the PBMR can reach temperatures in
up to about 1370 K under normal operating conditions. This calls for design of high temperature
irradiation rigs for irradiation of the PBMR fuel in the SAFARI-1 reactor. The design of this instrument
(rig) should be such that to create an isolated high temperature environment in the SAFARI-1 reactor, to
achieve the requirements of the PBMR fuel irradiation program. The design of the irradiation rig is
planned such that the rig should fit in the existing irradiation channels of the SAFARI-1 reactor, a time
and cost saving from the licensing perspective.
This study aims to establish the know-how of coated particle and pebble modeling in using the Monte
Carlo N-Particle code (MCNP5). The study also aims to establish the know-how of rig design. In this
study, the Necsa in-house code Overall System for the Calculation of Reactors (OSCAR-3), a software
known as OScar 3-Mcnp INTerface (OSMINT) linking OSCAR-3 and MCNP5, also developed at Necsa,
as well as MCNP5 code developed and maintained by the Los Alamos team, are used to calculate
neutronic and power distribution parameters that are important for fuel irradiations and for rig design.
This study presents results and data that can be used to make improvements in the design of the rig or to
confirm if the required operational conditions can be met with the current preliminary rig design. Result
of the neutronic analysis are presented for the SAFARI-1 core, core irradiation channel B6 (where the
PBMR fuel irradiation rig is loaded for the purpose of this study), the rig structure and the pebble fuel are
presented. Furthermore results of the power distribution and nuclear heating values in the reactor core, the
irradiation channel B6, the rig structures and the pebble fuel is also presented.
The loading of the PBMR fuel irradiation rig in core position B6 reduces the core reactivity due to the
fact that the loading of the rig displaces the water moderator in channel B6 introducing vast amounts of
helium. This impacts on the keff value because there will be less neutron thermalization and reproduction
due to the decreased population of thermal neutrons. The rig is found to introduce a negative reactivity
insertion of 46 pcm. The loading of this rig in the core leads to no significant perturbations on the core
power distribution. The core hottest channel is still localized in core channel C6 both with RIG IN and RIG OUT cases. A power tilt is observed, with the south side of the core experiencing reduced assembly
averaged fission power, with correspondingly small compensations from the assemblies on the north side
of the core.
The perturbations on the core assembly averaged fluxes are more pronounced in the eight assemblies
surrounding B6. Core position B6 suffers an 18% neutron flux depression with the loading of the rig. The
fluxes in core positions A5, A6, A7, B5, B7 and C7 are increased when the rig is loading. The largest
increases are noted as 12% in A7, 9% in A6 and 6% in A5 and B7. All the eight core positions
surrounding B6 experience reduced photon fluxes with the loading of the rig. Core position B6 shows a
flux depression of up to 20%, with 10% reduction in core position A6. The remainder seven positions
surrounding B6 shows flux depressions of no more than 5%.
Further on, due to decreased moderation effects, the axial neutron flux in core position B6 is reduced by
20% when the rig is loaded. The energy dependent neutron flux in B6 decreases by 50% in the thermal
energy range with corresponding increases of up to 50% in the resonance and fast energy regions. The
axial and the energy dependent photon flux in core position B6 decreases by up to 20% when the rig is
loaded.
The magnitude of the neutron and photon fluxes is found to have a direct proportion on the neutron and
photon heating values. While the amount of neutron heating in core position B6 increases by one order of
magnitude, when the rig is loaded, the photon heating values increases by up to 60% in the region
spanning ±10cm about the core centerline. The amount of photon heating in the rig structural materials
dominates neutron heating, except in the helium regions of the rig, where neutron heating dominates
photon heating. In the fuel region of the pebble, fission heating (3803W) largely dominates photon heating (119W). / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009
|
Page generated in 0.0364 seconds