Spelling suggestions: "subject:"periodic array"" "subject:"eriodic array""
1 |
A high gain multiband offset MIMO antenna based on a planar log-periodic array for Ku/K-band applicationsFakharian, M.M., Alibakhshikenari, M., See, C.H., Abd-Alhameed, Raed 27 March 2022 (has links)
Yes / An offset quad-element, two-port, high-gain, and multiband multiple-input multiple-output (MIMO) planar antenna based on a log-periodic dipole array (LPDA) for Ku/K-band wireless communications is proposed, in this paper. A single element antenna has been designed starting from Carrel's theory and then optimized with a 50-Ω microstrip feed-line with two orthogonal branches that results mainly in a broadside radiation pattern and improves diversity parameters. For experimental confirmation, the designed structure is printed on an RT-5880 substrate with a thickness of 1.57 mm. The total substrate dimensions of the MIMO antenna are 55 × 45 mm2. According to the measured results, the designed structure is capable of working at 1.3% (12.82-12.98 GHz), 3.1% (13.54-13.96 GHz), 2.3% (14.81-15.15 GHz), 4.5% (17.7-18.52 GHz), and 4.6% (21.1-22.1 GHz) frequency bands. Additionally, the proposed MIMO antenna attains a peak gain of 4.2-10.7 dBi with maximum element isolation of 23.5 dB, without the use of any decoupling structure. Furthermore, the analysis of MIMO performance metrics such as the envelope correlation coefficient (ECC) and mean effective gain (MEG) validates good characteristics, and field correlation performance over the operating band. The proposed design is an appropriate option for multiband MIMO applications for various wireless systems in Ku/K-bands.
|
2 |
Slow Flow of Viscoelastic Fluids Through Fibrous Porous MediaYip, Ronnie 12 January 2012 (has links)
This thesis reports on an experimental study of slow viscoelastic flow through models of fibrous porous media. The models were square arrays of parallel cylinders, with solid volume fractions or ‘solidities’ of 2.5%, 5.0%, and 10%. An initial study using a Newtonian fluid provided a baseline for comparison with results for two Boger fluids, so that the effects of fluid elasticity could be determined. Boger fluids are elastic fluids that have near constant viscosities and can be used in experiments without having to account for shear-thinning effects. The experimental approach involved measurements of pressure loss through the three arrays and interior velocity measurements using particle image velocimetry (PIV).
For the Newtonian flows, pressure loss measurements were in good agreement with the analytical predictions of Sangani and Acrivos (1982). PIV measurements showed velocity profiles which were symmetrical and independent of flow rate.
Pressure loss measurements for the Boger fluid flows revealed that the onset of elastic effects occurred at a Deborah number of approximately 0.5, for both fluids and the three arrays. Flow resistance data collapsed for the two Boger fluids, and increased with solidity. For all three models, the flow resistance increased monotonically with Deborah number, reaching values up to four times the Newtonian resistance for the 10% model.
PIV measurements showed that the transverse velocity profiles for the Newtonian and Boger fluids were the same at Deborah numbers below the elastic onset. Above onset, the profiles became skewed. The skewness, like the flow resistance, was observed to increase with both Deborah number and solidity.
In the wake regions between cylinders in a column, periodic flow structures formed in the spanwise direction. The structures were staggered from column to column, consistent with the skewing. As either Deborah number or solidity increased, the flow structures became increasingly three-dimensional, and the stagger became more symmetric.
An analysis of fluid stresses reveals that the elastic flow resistance is attributed to additional normal stresses caused by shearing, and not by extension.
|
3 |
Slow Flow of Viscoelastic Fluids Through Fibrous Porous MediaYip, Ronnie 12 January 2012 (has links)
This thesis reports on an experimental study of slow viscoelastic flow through models of fibrous porous media. The models were square arrays of parallel cylinders, with solid volume fractions or ‘solidities’ of 2.5%, 5.0%, and 10%. An initial study using a Newtonian fluid provided a baseline for comparison with results for two Boger fluids, so that the effects of fluid elasticity could be determined. Boger fluids are elastic fluids that have near constant viscosities and can be used in experiments without having to account for shear-thinning effects. The experimental approach involved measurements of pressure loss through the three arrays and interior velocity measurements using particle image velocimetry (PIV).
For the Newtonian flows, pressure loss measurements were in good agreement with the analytical predictions of Sangani and Acrivos (1982). PIV measurements showed velocity profiles which were symmetrical and independent of flow rate.
Pressure loss measurements for the Boger fluid flows revealed that the onset of elastic effects occurred at a Deborah number of approximately 0.5, for both fluids and the three arrays. Flow resistance data collapsed for the two Boger fluids, and increased with solidity. For all three models, the flow resistance increased monotonically with Deborah number, reaching values up to four times the Newtonian resistance for the 10% model.
PIV measurements showed that the transverse velocity profiles for the Newtonian and Boger fluids were the same at Deborah numbers below the elastic onset. Above onset, the profiles became skewed. The skewness, like the flow resistance, was observed to increase with both Deborah number and solidity.
In the wake regions between cylinders in a column, periodic flow structures formed in the spanwise direction. The structures were staggered from column to column, consistent with the skewing. As either Deborah number or solidity increased, the flow structures became increasingly three-dimensional, and the stagger became more symmetric.
An analysis of fluid stresses reveals that the elastic flow resistance is attributed to additional normal stresses caused by shearing, and not by extension.
|
4 |
Multimodal vibration damping of structures coupled to their analogous piezoelectric networks / Amortissement vibratoire multimodal de structures couplées à leurs réseaux piézoélectriques analoguesLossouarn, Boris 16 September 2016 (has links)
L'amplitude vibratoire d'une structure mince peut être réduite grâce au couplage électromécanique qu'offrent les matériaux piézoélectriques. En termes d'amortissement passif, les shunts piézoélectriques permettent une conversion de l'énergie vibratoire en énergie électrique. La présence d'une inductance dans le circuit crée une résonance électrique due à l'échange de charges avec la capacité piézoélectrique. Ainsi, l'ajustement de la fréquence propre de ce shunt résonant à celle de la structure mécanique équivaut à la mise en œuvre d'un amortisseur à masse accordée. Cette stratégie est étendue au contrôle d'une structure multimodale par multiplication du nombre de patchs piézoélectriques. Ceux-ci sont interconnectés via un réseau électrique ayant un comportement modal approximant celui de la structure à contrôler. Ce réseau multi-résonant permet donc le contrôle simultané de plusieurs modes mécaniques. La topologie électrique adéquate est obtenue par discrétisation de la structure mécanique puis par analogie électromécanique directe. Le réseau analogue fait apparaître des inductances et des transformateurs dont le nombre et les valeurs sont choisis en fonction de la bande de fréquences à contrôler. Après s'être penché sur la conception de composants magnétique adaptés, la solution de contrôle passif est appliquée à l'amortissement de structures unidimensionnelles de type barres ou poutres. La stratégie est ensuite étendue au contrôle de plaques minces par mise en œuvre d'un réseau électrique bidimensionnel. / Structural vibrations can be reduced by benefiting from the electromechanical coupling that is offered by piezoelectric materials. In terms of passive damping, piezoelectric shunts allow converting the vibration energy into electrical energy. Adding an inductor in the circuit creates an electrical resonance due to the charge exchanges with the piezoelectric capacitance. By tuning the resonance of the shunt to the natural frequency of the mechanical structure, the equivalent of a tuned mass damper is implemented. This strategy is extended to the control of a multimodal structure by increasing the number of piezoelectric patches. These are interconnected through an electrical network offering modal properties that approximate the behavior of the structure to control. This multi-resonant network allows the simultaneous control of multiple mechanical modes. An adequate electrical topology is obtained by discretizing the mechanical structure and applying the direct electromechanical analogy. The analogous network shows inductors and transformers, whose numbers and values are chosen according to the frequency band of interest. After focusing on the design of suitable magnetic components, the passive control strategy is applied to the damping of one-dimensional structures as bars or beams. It is then extended to the control of thin plates by implementing a two-dimensional analogous network.
|
5 |
Extremely asymmetrical scattering of waves in periodic Bragg arraysPile, David Fujio Pelleas January 2003 (has links)
This thesis fills in the gaps in the existing theory of wave phenomena in thick diffraction gratings at extreme angles of scattering, i.e. when the scattered wave propagates parallel or almost parallel to the grating boundaries. A consistent theory of a new type of Bragg scattering of bulk and guided optical modes in thick uniform and non-uniform, dissipative and non-dissipative, slanted periodic gratings has been developed. This type of scattering is
called extremely asymmetrical scattering (EAS).
One of the main distinctive features of EAS is the strong resonant increase of the scattered wave amplitude compared to the amplitude of the incident wave. Several unique combinations of strong resonances shaping a complex multi-resonant pattern of EAS in different types of gratings have been predicted and investigated theoretically and numerically. This includes the prediction of a new resonant wave effect in non-uniform gratings with varying phase – double-resonant EAS, the discovery of several sharp and strong resonances with respect to scattering angle in gratings with the scattered wave
propagating almost parallel to the grating boundaries (grazing-angle scattering (GAS)) for the case of second-order scattering, and the prediction of a new type of eigenmode in gratings with second-order scattering (especially in gratings with large amplitude). In addition, several other important practical problems that may be crucial for the experimental observation and application of EAS and GAS have been solved. These are the determination of the tolerance of EAS to small grating imperfections, e.g., fluctuations of the grating amplitude, prediction
of unusually high sensitivity of second-order EAS to small variations of mean structural parameters, determination of the effect of weak dissipation on EAS, etc. Physical reasons for the predicted resonances and effects are explained. In particular, the crucial role of the diffractional divergence for EAS and GAS has been revealed, especially for non-uniform gratings.
Methods of analysis involve the approximate and rigorous approaches. The approximate method is based on understanding the role of the diffractional divergence in the geometry of EAS and the two-wave approximation (valid for any types of waves). The rigorous approach is based on the rigorous coupled-wave analysis (RCWA) and, in particular, the known enhanced T-matrix
algorithm (by Moharam, et al.) that is numerically stable for narrow and wide gratings with arbitrary amplitude (valid only for bulk electromagnetic waves).
|
6 |
リフレクトアレーアンテナの広帯域化および偏波特性制御のための高性能共振素子形状に関する研究 / リフレクト アレー アンテナ ノ コウタイイキカ オヨビ ヘンパ トクセイ セイギョ ノ タメ ノ コウセイノウ キョウシン ソシ ケイジョウ ニカンスル ケンキュウ東 大智, Daichi Higashi 12 September 2019 (has links)
本研究は, 広帯域直交偏波共用低交差偏波特性, 偏波変換特性および任意の反射位相差を有する高性能・高機能リフレクトアレー共振素子の開発を行い, 設計・試作したリフレクトアレーアンテナの放射特性の数値的及び実験的検討の研究成果をまとめたものである. / 博士(工学) / Doctor of Philosophy in Engineering / 同志社大学 / Doshisha University
|
Page generated in 0.051 seconds