• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Étude de l’intégration des séparations membranaires dans les procédés de gazéification de la biomasse / Study of integration of the membrane separations in biomass gasification processes

Berger, Etienne 13 October 2016 (has links)
La gazéification permet de convertir la biomasse en gaz de synthèse composé principalement d’H2, de CO et de CO2. Ce gaz peut être utilisé comme combustible dans des moteurs ou pour produire du gaz naturel de synthèse. En plus du syngaz, la gazéification génère des espèces aromatiques lourdes qualifiées de goudrons, comme le toluène, le naphtalène et le phénanthrène. Ces espèces posent divers problèmes pratiques. Elles nuisent aux catalyseurs de SNG (surtout le toluène car plus abondant). Pour un emploi en moteur, les problèmes viennent des goudrons lourds qui sont condensables. L’épuration du syngaz est donc nécessaire pour permettre son utilisation. La perméation de gaz dans une membrane polymère dense est une technologie employée pour diverses séparations. En particulier, les membranes en silicone (PDMS) sont plus perméables aux vapeurs organiques qu’aux gaz. Cette propriété est déjà utilisée à grande échelle pour retirer des vapeurs légères de flux d’air à température ambiante. La séparation envisagée dans cette thèse reprend cette idée mais avec des vapeurs inhabituellement lourdes et une température de 90°C, ce qui est élevé. La perméation repose sur des lois de sorption et de diffusion. Les paramètres de sorption ont été mesurés, ceux de diffusion ont été tirés de la littérature afin de permettre des simulations. Ces dernières révèlent que l’emploi d’une membrane en PDMS est une technologie prometteuse pour l’épuration du syngaz en vue d’un emploi en moteur. En revanche, cette technologie semble incapable de séparer efficacement le toluène des gaz permanents (par manque de sélectivité), ce qui la rend inapte à épurer le syngaz en vue d’une application de type SNG. / Gasification allows to convert biomass into a synthesis gas containing mainly H2, CO and CO2. This gas can be used as a fuel in engines or to produce synthesis natural gas (SNG). In practice, heavy aromatic species named tars (such as toluene, naphthalene, phenanthrene) are generated along with syngas. These species generate various practical problems. They damage the SNG catalysts (especially toluene since it’s the most abundant). If syngas is used in a combustion engine, the problems are linked to the heaviest tars that can condense. Therefore, syngas upgrading is a key step to allow a good use. Gas permeation across a dense polymer membrane is a technology that is used for several separations. In particular, silicone membranes (PDMS) are more permeable to organic vapors than to permanent gases. This property is ever used at high scale to remove light vapors from fluxes of air or of nitrogen at ambient temperature. The separation that is considered in this study uses this idea but the vapors are heavy and the temperature is 90°C; that is, quite a high level of temperature. The permeation of species through a membrane is ruled by sorption and diffusion laws. The sorption parameters have been measured and the diffusion parameters have been obtained from literature in order to allow simulations. These simulations, show that the use of a PDMS membrane seems to be a promising technology to upgrade syngas for a use in an engine. On the other hand, this technology seems unable to efficiently separate toluene from permanent gases (because of a too low selectivity); that is, this technology is not able to upgrade syngas for use in SNG production.
2

Étude expérimentale et simulation de procédés hybrides intégrant des membranes zéolites et polymères pour la purification d’hydrocarbures gazeux biosourcés par perméation de vapeurs / Experimental study and simulation of hybrid processes integrating zeolite and polymer membranes for the purification of bio-based gaseous hydrocarbons by vapor permeation

Picaud Vannereux, Simon 25 April 2019 (has links)
Ces travaux ont porté sur l’intérêt de l’utilisation d’une membrane composite zéolite (CHA SSZ-13) accessible à l’échelle commerciale au travers de la technologie membranaire de perméation de gaz et de vapeurs. L’applicabilité de cette technologie séparative s’est principalement focalisée sur la récupération du méthane, propane et d’isobutène issus de flux produits à des échelles industrielles par des procédés durables. La mise au point d’un banc expérimental pour la mesure de données de perméation de gaz et de vapeur a été réalisé. En se basant sur des mesures expérimentales de perméation menées avec la membrane zéolite de l’étude, un premier cas d’application pratique a été de simuler les performances séparatives d’un procédé hybride associant un module membranaire zéolite avec une condensation cryogénique à partir d’un cahier des charges industriel pour la récupération d’isobutène. Le procédé hybride étudié est toujours plus performant que le procédé de condensation cryogénique seul de référence en termes de pureté du produit condensé obtenu et de consommation énergétique. Des cartographies ont été dressées afin de situer les performances de séparation simulées en fonction de l’objectif de récupération d’isobutène souhaité. Un second cas théorique de récupération du propane à partir d’évents de purge à l’azote avec un procédé hybride de séparation cryogénique couplée à une membrane permsélective a été étudié. Une cartographie des performances de séparation membranaire relative au couple propane/diazote selon les données de la littérature ouverte actuelles a été présentée. La membrane la plus permsélective au diazote et au propane (respectivement CHA SSZ-13 et PEBAX 2533) a été sélectionné afin de simuler des procédés hybrides dont les performances séparatives ont été comparées à celles de la condensation cryogénique seule de référence. Pour de faibles teneurs en propane, il a été constaté que le procédé le plus performant (besoin énergétique et qualité du produit condensé) impliquait un module membranaire polymère de type PEBAX 2533 avec un système de mise sous vide du perméat. / This work focused on the interest of using a zeolite composite membrane (CHA SSZ-13) accessible on a commercial scale through the membrane technology of gas and vapor permeation. The applicability of this separation technology has mainly focused on the recovery of methane, propane and isobutene from fluxes produced at industrial scales by sustainable processes. The development of an experimental lab scale pilot for gas and vapor permeation data measurements is detailed. Based on experimental permeation measurements carried out with the zeolite membrane of the study, a first case of practical application was to simulate the separation performance of a hybrid process associating a zeolite membrane module with a cryogenic condensation from an industrial specification for the recovery of isobutene. The hybrid process studied is always more efficient than the only cryogenic condensation process taken as reference in terms of purity of the condensed product obtained and energy consumption. A chart was generated to locate the simulated separation performance based on the desired isobutene recovery objective. A second theoretical case of propane recovery from nitrogen purging vents with hybrid membrane cryogenic separation process was studied. This study presented a chart of the membrane separation performance of propane over nitrogen according to data from the open literature. The most nitrogen- and propane-selective membrane (CHA SSZ-13 and PEBAX 2533 respectively) was then selected and used in order to simulate hybrid processes where separation performances were compared to a baseline cryogenic standalone process. For low propane contents in the nitrogen feed mixture, it was found that the most efficient process (energy need and quality of the condensed product) involved a PEBAX 2533 polymer membrane module with a vacuum system for the permeate.

Page generated in 0.0949 seconds