Spelling suggestions: "subject:"bpersonal music"" "subject:"5personal music""
1 |
Short-term effects of simultaneous cardiovascular workout and personal music device use on the otoacoustic emissions of young adultsFreeman, Jessica January 2014 (has links)
Recent advances in the field of audiology have indicated that there has been a growing concern regarding the potential damage to the hearing mechanism induced by recreational noise exposure from personal music devices (PMD). Regular PMD use may have a long-term damaging effect on the outer- and inner hair cells of the cochlea which may result in a progressive hearing loss. As PMDs have advanced to a stage where the memory of the devices are able to contain hours of listening content, the environments where these devices are being used are rapidly expanding. Many young adults tend to use their PMDs whilst exercising. Exercise in itself induces physiological and metabolic changes such as increased blood flow and oxygen levels within the structures of the cochlea.
The purpose of this study was to determine the differential impact and short-term effects of simultaneous cardiovascular workout and personal music device (PMD) use on the otoacoustic emissions of young adults. Seven female and five male subjects completed three testing conditions: (i) one hour exposure to PMD use in isolation, (ii) one hour exposure to cardiovascular workout in isolation, and (iii) one hour simultaneous exposure to PMD use and cardiovascular workout. Distortion product otoacoustic emissions (DPOAEs) were conducted prior to, as well as directly following each testing condition, as primary indicator of cochlear responses emitted through a preset stimulus frequency sequence measuring the 2f₁ - f₂ (75 – 70 dB SPL) and constructing a plot of DPOAE levels as a function of frequency.
While each of the testing conditions on its own did not result in statistically significant changes of the DPOAE response, a highly significant different profile in the DPOAE response level increase/decrease for the higher frequencies (6-8 kHz) was obtained when comparing the different sessions to each other. Where exposure to cardiovascular workout showed a clear trend of an increased DPOAE response level between the pre-exposure and post-exposure testing from 2 kHz to 8 kHz with a maximum increase at 6 kHz, both the music only condition and the combined condition where the cardiovascular workout was combined with music resulted in a significant different profile. During combined exposure a clear trend of decreased DPOAE response amplitudes between the pre-exposure and post-exposure testing were seen for the higher frequencies. These findings may support the notion of a clear effect of cardiovascular workout on the otoacoustic emissions at higher test frequencies, measured by DPOAEs when performed with and without music exposure. / Dissertation (MLOG)--University of Pretoria, 2014. / tm2015 / Speech-Language Pathology and Audiology / MLOG / Unrestricted
|
2 |
Exploring emotive listening experiences through continuous measurement of self-report and listening profiles / Maria Louisa SchutteSchutte, Maria Louisa January 2011 (has links)
Training can enable performers to express music in a personal and emotional way while
communicating aesthetic impressions to an audience. Little research has been done on the
emotive experiences of performing musicians listening to their own performances. The main
goal of this study was to develop a reliable way to investigate emotive content of such
experiences through a combination of listening profiles and continuous measurement.
This empirical, methodological study used a mixed-method design. Responses from formally
and informally trained musicians were tested. The methodology consists of two parts:
listening profiles (Part I), and the continuous measurement of self-reported emotional
response to music (Part II), supported by interviews. Part I consists of a demographic
questionnaire, a listening test and a personality test. Part II consists of a computerised
questionnaire with four questions: 1) word sorting, 2) word, colours, and facial expressions
checklists, which participants use to indicate their emotional responses while the music plays,
3) free description, and 4) rating scales. Data was obtained during three test periods.
Part I results revealed that personality, illness, preferences, and psychological factors
influence the emotive content of listening experiences. Participants’ response time and
manner of word sorting was also supportive of their profiles. Part II results revealed that
listeners pay attention to both structural and performance elements as well as emotive content
in both prescribed and personal musical tracks. Only a few participants were able to identify
the predetermined emotion of the prescribed musical tracks. Participants’ experiences seemed
to be influenced by training and personal preferences.
Listening to their own recorded performances, informally trained participants were able to
focus progressively less on performance elements and more on emotive content, while formally trained participants seemed to focus progressively more on performance elements,
and less on emotive content. / Thesis (MMus)--North-West University, Potchefstroom Campus, 2012
|
3 |
Exploring emotive listening experiences through continuous measurement of self-report and listening profiles / Maria Louisa SchutteSchutte, Maria Louisa January 2011 (has links)
Training can enable performers to express music in a personal and emotional way while
communicating aesthetic impressions to an audience. Little research has been done on the
emotive experiences of performing musicians listening to their own performances. The main
goal of this study was to develop a reliable way to investigate emotive content of such
experiences through a combination of listening profiles and continuous measurement.
This empirical, methodological study used a mixed-method design. Responses from formally
and informally trained musicians were tested. The methodology consists of two parts:
listening profiles (Part I), and the continuous measurement of self-reported emotional
response to music (Part II), supported by interviews. Part I consists of a demographic
questionnaire, a listening test and a personality test. Part II consists of a computerised
questionnaire with four questions: 1) word sorting, 2) word, colours, and facial expressions
checklists, which participants use to indicate their emotional responses while the music plays,
3) free description, and 4) rating scales. Data was obtained during three test periods.
Part I results revealed that personality, illness, preferences, and psychological factors
influence the emotive content of listening experiences. Participants’ response time and
manner of word sorting was also supportive of their profiles. Part II results revealed that
listeners pay attention to both structural and performance elements as well as emotive content
in both prescribed and personal musical tracks. Only a few participants were able to identify
the predetermined emotion of the prescribed musical tracks. Participants’ experiences seemed
to be influenced by training and personal preferences.
Listening to their own recorded performances, informally trained participants were able to
focus progressively less on performance elements and more on emotive content, while formally trained participants seemed to focus progressively more on performance elements,
and less on emotive content. / Thesis (MMus)--North-West University, Potchefstroom Campus, 2012
|
4 |
Effects of Personal Music Player with Headphone Use on Hearing Acuity among College-Aged StudentsStephenson, Sarah Louise 04 May 2012 (has links)
No description available.
|
5 |
Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge BaseGängler, Thomas 22 September 2011 (has links) (PDF)
Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.
|
6 |
Semantic Federation of Musical and Music-Related Information for Establishing a Personal Music Knowledge BaseGängler, Thomas 20 May 2011 (has links)
Music is perceived and described very subjectively by every individual. Nowadays, people often get lost in their steadily growing, multi-placed, digital music collection. Existing music player and management applications get in trouble when dealing with poor metadata that is predominant in personal music collections. There are several music information services available that assist users by providing tools for precisely organising their music collection, or for presenting them new insights into their own music library and listening habits. However, it is still not the case that music consumers can seamlessly interact with all these auxiliary services directly from the place where they access their music individually. To profit from the manifold music and music-related knowledge that is or can be available via various information services, this information has to be gathered up, semantically federated, and integrated into a uniform knowledge base that can personalised represent this data in an appropriate visualisation to the users. This personalised semantic aggregation of music metadata from several sources is the gist of this thesis. The outlined solution particularly concentrates on users’ needs regarding music collection management which can strongly alternate between single human beings. The author’s proposal, the personal music knowledge base (PMKB), consists of a client-server architecture with uniform communication endpoints and an ontological knowledge representation model format that is able to represent the versatile information of its use cases. The PMKB concept is appropriate to cover the complete information flow life cycle, including the processes of user account initialisation, information service choice, individual information extraction, and proactive update notification. The PMKB implementation makes use of SemanticWeb technologies. Particularly the knowledge representation part of the PMKB vision is explained in this work. Several new Semantic Web ontologies are defined or existing ones are massively modified to meet the requirements of a personalised semantic federation of music and music-related data for managing personal music collections. The outcome is, amongst others, • a new vocabulary for describing the play back domain, • another one for representing information service categorisations and quality ratings, and • one that unites the beneficial parts of the existing advanced user modelling ontologies. The introduced vocabularies can be perfectly utilised in conjunction with the existing Music Ontology framework. Some RDFizers that also make use of the outlined ontologies in their mapping definitions, illustrate the fitness in practise of these specifications. A social evaluation method is applied to carry out an examination dealing with the reutilisation, application and feedback of the vocabularies that are explained in this work. This analysis shows that it is a good practise to properly publish Semantic Web ontologies with the help of some Linked Data principles and further basic SEO techniques to easily reach the searching audience, to avoid duplicates of such KR specifications, and, last but not least, to directly establish a \"shared understanding\". Due to their project-independence, the proposed vocabularies can be deployed in every knowledge representation model that needs their knowledge representation capacities. This thesis added its value to make the vision of a personal music knowledge base come true.:1 Introduction and Background 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Personal Music Collection Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Music Information Management 17
2.1 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1.1 Knowledge Representation Models . . . . . . . . . . . . . . . . . 18
2.1.1.2 Semantic Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.1.3 Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Knowledge Management Systems . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2.1 Information Services . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2.2 Ontology-based Distributed Knowledge Management Systems . . 20
2.1.2.3 Knowledge Management System Design Guideline . . . . . . . . 21
2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 The Evolution of the World Wide Web . . . . . . . . . . . . . . . . . . . . . 22
Personal Music Knowledge Base Contents
2.2.1.1 The Hypertext Web . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.2 The Normative Principles of Web Architecture . . . . . . . . . . . 23
2.2.1.3 The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 Common Semantic Web Knowledge Representation Languages . . . . . . 25
2.2.3 Resource Description Levels and their Relations . . . . . . . . . . . . . . . 26
2.2.4 Semantic Web Knowledge Representation Models . . . . . . . . . . . . . . 29
2.2.4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4.2 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4.3 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4.4 Storing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.4.5 Providing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.4.6 Consuming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Music Content and Context Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Categories of Musical Characteristics . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Music Metadata Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 Music Metadata Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3.1 Audio Signal Carrier Indexing Services . . . . . . . . . . . . . . . . 41
2.3.3.2 Music Recommendation and Discovery Services . . . . . . . . . . 42
2.3.3.3 Music Content and Context Analysis Services . . . . . . . . . . . 43
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Personalisation and Environmental Context . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 User Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 Context Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.4.3 Stereotype Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 The Personal Music Knowledge Base 48
3.1 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Knowledge Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 User Account Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Individual Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Information Service Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Proactive Update Notification . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 Information Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.6 Personal Associations and Context . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4 A Personal Music Knowledge Base 57
4.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.1 The Info Service Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.2 The Play Back Ontology and related Ontologies . . . . . . . . . . . . . . . . 61
4.1.2.1 The Ordered List Ontology . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2.2 The Counter Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.2.3 The Association Ontology . . . . . . . . . . . . . . . . . . . . . . . 64
4.1.2.4 The Play Back Ontology . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 The Recommendation Ontology . . . . . . . . . . . . . . . . . . . . . . . . 69
4.1.4 The Cognitive Characteristics Ontology and related Vocabularies . . . . . . 72
4.1.4.1 The Weighting Ontology . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.4.2 The Cognitive Characteristics Ontology . . . . . . . . . . . . . . . 73
4.1.4.3 The Property Reification Vocabulary . . . . . . . . . . . . . . . . . 78
4.1.5 The Media Types Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Knowledge Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5 Personal Music Knowledge Base in Practice 87
5.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.1 AudioScrobbler RDF Service . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1.2 PMKB ID3 Tag Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Reutilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Reviews and Mentions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.4 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6 Conclusion and Future Work 93
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
|
Page generated in 0.0741 seconds