Spelling suggestions: "subject:"petit ARN régulateurs"" "subject:"petit ARN régulation""
1 |
Le riborégulateur thiB d'Escherichia coli : une régulation en trans?Simoneau-Roy, Maxime January 2014 (has links)
La régulation de l’expression génétique est essentielle afin qu’un organisme puisse s’adapter aux changements environnementaux. Chez les bactéries, la régulation peut s’effectuer à plusieurs étapes de l’expression des gènes (transcription, stabilité de l’ARN, traduction, maturation et dégradation des protéines) et par des mécanismes impliquant différents types de molécules (ADN, ARN, protéines, métabolites ou ions inorganiques). Traditionnellement, les protéines se situaient au centre de ces mécanismes de régulation. On sait maintenant que certains ARN, dont les riborégulateurs, ont également un grand rôle à jouer dans ce processus. Un riborégulateur est un élément génétique retrouvé dans une région non-codante de certains ARN messagers (ARNm), qui peut lier directement un ligand spécifique afin de réguler l’expression de son transcrit. Chez Escherichia coli (E. coli), trois riborégulateurs lient la thiamine pyrophosphate (TPP). Un d’entre eux, le riborégulateur thiB, n’a toujours pas été étudié. On croit qu’il contrôlerait, au niveau de l’initiation de la traduction, l’expression de l’opéron thiBPQ encodant un transporteur ABC de la thiamine. De plus, un petit ARN nommé SroA a précédemment été identifié grâce à des techniques de séquençage d’ARN. SroA correspond à l’aptamère du riborégulateur thiB, mais aucun rôle ne lui a été attribué à ce jour.
Le présent mémoire porte sur la caractérisation du riborégulateur thiB d’E. coli. Dans un premier temps, nous avons démontré que le riborégulateur est fonctionnel. Le mécanisme permettant la régulation génétique en cis est cependant plus complexe que seulement la régulation prédite au niveau traductionnel. Dans un second temps, nous avons utilisé deux approches différentes à l’échelle transcriptomique afin de vérifier si SroA régule l’expression de certains ARNm en trans. Plusieurs cibles potentielles découlent de cette étude. Une caractérisation préliminaire de certaines d’entre elles est présentée ici et devra être poursuivie par des travaux subséquents. Les résultats présentés ici suggèrent que le riborégulateur thiB régulerait l’expression de l’opéron thiBPQ (en cis) et d’autres gènes en trans.
|
2 |
Caractérisation du mécanisme de régulation négative de l'ARNm hns par le petit ARN régulateur DsrA chez Escherichia coliMorissette, Audrey January 2010 (has links)
DsrA est un petit ARN régulateur que l'on retrouve chez plusieurs espèces bactériennes, notamment Escherichia coli non-pathogène et pathogène. DsrA est exprimé principalement lorsque la bactérie est dans un environnement température suboptimale (<37 [degrés Celsius]). En conditions d'expression de DsrA, on retrouve une forme pleine longueur de 85 nucléotides et une forme tronquée de 60 nucléotides. Il a été montré que DsrA, dans sa forme pleine longueur ou tronquée, peut diminuer l'initiation de la traduction de l'ARNm hns , codant pour la protéine H-NS, un régulateur majeur de la transcription qui module près de 5% des gènes chez E. coli . Toutefois, les mécanismes impliqués dans la répression traductionnelle d'hns par DsrA n'ont pas été caractérisés. Les travaux présentés dans ce mémoire démontrent que DsrA bloque l'initiation de la traduction d'hns en s'appariant immédiatement en aval du codon d'initiation de la traduction. De plus, DsrA provoque la dégradation de l'ARNm hns en recrutant le complexe dégradosome ARN. La RNase E, qui fait partie de ce complexe, va cliver l'ARNm au nucléotide 131 dans la région codante du gène, soit 80 nucléotides en aval de l'appariement entre hns et DsrA. Ce clivage va provoquer la dégradation rapide de l'ARNm hns par les exoribonucléases de E. coli . Mes travaux de maîtrise ont abouti à un modèle d'action de DsrA sur hns qui pourrait inclure les autres cibles négatives de DsrA. De plus, ils suggèrent que les sRNA semblent partager le même mécanisme général de dégradation des ARNm. Ces travaux démontrent également que l'extrémité 5' de DsrA tronqué est monophosphate ce qui suggère un clivage par une ribonucléase. Toutefois aucune ribonucléase connue d' E. coli ne semble produire la forme tronquée de DsrA, bien que l'exoribonucléase PNPase semble influencer sa dégradation. Ces travaux démontrent également l'impact des protéines RppH et CsdA dans la dégradation de l'ARNm hns à 25 [degrés Celsius], c'est-à-dire lorsque DsrA est naturellement exprimé. Ces protéines sont importantes pour la stabilité de hns et pour sa dégradation en présence de DsrA. Toutefois, le mécanisme d'action de ces protéines n'a pas été déterminé.
|
3 |
Étude et modélisation des mécanismes de régulation des petits ARN régulateurs chez Escherichia coliBenjamin, Julie-Anna January 2014 (has links)
L’avancement des connaissances sur la biologie de l’ARN progresse à un rythme effréné. En effet, les découvertes des dernières années ont confirmé l’importance de l’ARN comme régulateur. Par exemple, de courtes molécules d’ARN, appelées sRNA (small RNA), ont été identifiées comme régulateurs post-transcriptionnels majeurs, capables de moduler l’expression des ARN messagers (ARNm) chez les procaryotes. Généralement, le mode d’action de ces sRNA consiste à s’attacher de manière anti-sens à leurs ARNm cibles, au site de la liaison du ribosome située dans la région 5′ non traduite de l’ARNm. L’inhibition de la traduction par le sRNA conduit, dans la majorité des cas, à la dégradation rapide de l’ARNm.
Dans le cadre de mes travaux de recherche, j’ai participé à modéliser, à partir de données biologiques, certains mécanismes de régulation de cibles ARNm. Plus précisément, deux des sRNA, parmi les mieux caractérisés chez E. coli, soient RyhB et Spot42, ont été analysés. Cette étude a montré qu’un sRNA peut réguler ses cibles selon différents régimes (efficace ou modéré) en fonction du mode de régulation priorisé par le sRNA, et ce, indépendamment de son abondance relative. Ces résultats permettront d’améliorer notre compréhension et notre capacité à prédire l’efficacité d’un sRNA à réguler ses cibles ARNm.
Par des recherches subséquentes, il m’a été possible de démontrer que l'expression de l’ARNm encodant pour la protéine aconitase B était régulée de manière antagoniste à la fois par le sRNA RyhB et par la protéine aconitase B et ce, dans une condition de carence en fer. Par la suite, j’ai pu mettre en évidence un deuxième mécanisme de régulation similaire pour l’ARNm grxD, encodant pour la glutharédoxine D. Jusqu'à ce jour, le sRNA RyhB démontrait une efficacité infaillible pour dégrader ses ARNm cibles. Les résultats obtenus durant ce projet démontrent sans équivoque une nouvelle voie de protection permettant à l’ARNm d'éviter la dégradation par un petit ARN régulateur. Ce mécanisme de protection de l'ARNm ouvre la porte à un tout nouveau processus cellulaire de régulation post-transcriptionnelle qui s'étend sûrement à un groupe plus important d’ARN.
|
4 |
Découverte de nouveaux mécanismes d'actions des petits ARNs régulateurs bactériensDesnoyers, Guillaume January 2012 (has links)
Le concept d’opéron, défini en 1960 par Jacob et Monod comme étant un groupe de gènes transcrits ensemble et dont les produits concourent à la réalisation d'une même fonction physiologique, est resté jusqu’à tout récemment pratiquement inchangé. Selon ce modèle, toute régulation génétique a lieu au niveau transcriptionnel et est médiée par des facteurs protéiques. Cependant, au cours de la dernière décennie, une révolution a eu lieu alors qu’il fut démontré que des petites molécules d'ARN, appelés sRNAs (small RNAs), sont capables de réprimer de manière post-transcriptionnelle l’expression d’ARN messagers (ARNm) chez les procaryotes. Leur mécanisme d'action consiste généralement à inhiber la traduction d'un ARNm en compétitionnant avec la liaison des ribosomes sur le site de liaison des ribosomes (SLR) situé dans la région 5' non traduite d’un ARNm. Cette inhibition de la traduction s’accompagne généralement d'une dégradation rapide de l’ARNm cible. Les recherches que j'ai effectuées au cours de mes études de 2e et 3e cycle ont permis de découvrir des mécanismes alternatifs par lesquels les sRNAs peuvent réprimer l’expression d’ARNm cibles. J'ai tout d’abord démontré que l’expression du petit ARN RyhB lors d'une carence en fer entraîne la dégradation seulement partielle de l’ARNm polycistronique iscRSUA. De plus, j'ai participé à l’élucidation du mécanisme de dégradation d'un ARNm par l’action d'un sRNA. En effet, nous démontrons que le site de clivage de la RNase E se situe plusieurs centaines de nucléotides en aval dans le cadre de lecture de la cible et que l'arrêt de la traduction n'est pas suffisant à l’obtention d'une dégradation rapide d'un ARNm cible. Finalement, j'ai caractérisé un nouveau mécanisme par lequel un sRNA peut réprimer la traduction d’un ARNm en s’appariant loin en amont du SLR par le recrutement de la protéine chaperon Hfq. Nous démontrons que c'est la protéine qui joue le rôle principal dans la compétition avec les ribosomes.
|
Page generated in 0.0637 seconds