Spelling suggestions: "subject:"dégradosome"" "subject:"degradosome""
1 |
Études in vivo du riborégulateur lysine chez Escherichia coliCaron, Marie-Pier January 2012 (has links)
L'adaptation est un phénomène capital pour la croissance optimale et la survie des bactéries dans un environnement qui est constamment soumis à des changements physico-chimiques. Pour y parvenir, les bactéries doivent contrôler l'expression génétique de façon efficace, c'est-à-dire en ayant le moins de perte énergétique possible et ce, dans un laps de temps très court suite à la détection du stress. Chez les procaryotes, on dénombre plusieurs mécanismes différents pour réguler l'expression des gènes. Par exemple, la transcription de certains gènes peut être inhibée ou activée par des facteurs protéiques. Dans certains cas, c'est plutôt la stabilité de l'ARNm ou encore le niveau traduction du gène qui est affecté, on parle alors de régulation post-transcriptionnelle. Chez les bactéries, les petits ARN régulateurs, exprimés selon différentes conditions de stress, contrôlent majoritairement l'expression de leurs gènes cibles de manière post-transcriptionelle. En plus de ces régulations en trans , il a récemment été découvert que certaines structures conservées de l'ARN pouvaient également contrôler l'expression de gènes en cis lors de la liaison spécifique d'un ligand. Ces structures, aujourd'hui connues sous le nom de riborégulateur, sont divisées en plusieurs classes dépendamment du type de ligand qui est lié. Chez Escherichia coli , il y a six riborégulateurs dont trois riborégulateurs TPP (thiMD, thiCEFSGH et thiBPQ ), un riborégulateur lysine (lysC ), un riborégulateur FMN (ribB ) et un riborégulateur AdoCbl (btuB ). Les résultats, présentés dans ce mémoire, portent sur la caractérisation du mode de régulation du riborégulateur lysine chez E. coli . Ainsi, pour la première fois dans le domaine des riborégulateurs, nous avons démontré que le riborégulateur lysine contrôle l'expression du gène lysC par deux mécanismes distincts, soit au niveau de la traduction du gène et de la stabilité de l'ARNm. Également, nous avons mis en évidence que par un changement de structure, le riborégulateur lysine peut contrôler l'accessibilité du site de clivage à la RNase E et par le fait même, la stabilité de l'ARNm. Ce nouveau mode de régulation ne semble pas être unique au riborégulateur lysine puisqu'il semble, selon les résultats préliminaires, que le riborégulateur thiC régulerait l'expression de l'opéron thiCEFSGH par les mêmes mécanismes de régulation.
|
2 |
Caractérisation du mécanisme de régulation négative de l'ARNm hns par le petit ARN régulateur DsrA chez Escherichia coliMorissette, Audrey January 2010 (has links)
DsrA est un petit ARN régulateur que l'on retrouve chez plusieurs espèces bactériennes, notamment Escherichia coli non-pathogène et pathogène. DsrA est exprimé principalement lorsque la bactérie est dans un environnement température suboptimale (<37 [degrés Celsius]). En conditions d'expression de DsrA, on retrouve une forme pleine longueur de 85 nucléotides et une forme tronquée de 60 nucléotides. Il a été montré que DsrA, dans sa forme pleine longueur ou tronquée, peut diminuer l'initiation de la traduction de l'ARNm hns , codant pour la protéine H-NS, un régulateur majeur de la transcription qui module près de 5% des gènes chez E. coli . Toutefois, les mécanismes impliqués dans la répression traductionnelle d'hns par DsrA n'ont pas été caractérisés. Les travaux présentés dans ce mémoire démontrent que DsrA bloque l'initiation de la traduction d'hns en s'appariant immédiatement en aval du codon d'initiation de la traduction. De plus, DsrA provoque la dégradation de l'ARNm hns en recrutant le complexe dégradosome ARN. La RNase E, qui fait partie de ce complexe, va cliver l'ARNm au nucléotide 131 dans la région codante du gène, soit 80 nucléotides en aval de l'appariement entre hns et DsrA. Ce clivage va provoquer la dégradation rapide de l'ARNm hns par les exoribonucléases de E. coli . Mes travaux de maîtrise ont abouti à un modèle d'action de DsrA sur hns qui pourrait inclure les autres cibles négatives de DsrA. De plus, ils suggèrent que les sRNA semblent partager le même mécanisme général de dégradation des ARNm. Ces travaux démontrent également que l'extrémité 5' de DsrA tronqué est monophosphate ce qui suggère un clivage par une ribonucléase. Toutefois aucune ribonucléase connue d' E. coli ne semble produire la forme tronquée de DsrA, bien que l'exoribonucléase PNPase semble influencer sa dégradation. Ces travaux démontrent également l'impact des protéines RppH et CsdA dans la dégradation de l'ARNm hns à 25 [degrés Celsius], c'est-à-dire lorsque DsrA est naturellement exprimé. Ces protéines sont importantes pour la stabilité de hns et pour sa dégradation en présence de DsrA. Toutefois, le mécanisme d'action de ces protéines n'a pas été déterminé.
|
3 |
Etude du dégradosome à ARN de la bactérie pathogène Helicobacter pylori / The RNA degradosome of bacterial pathogen Helicobacter pyloriGaltier, Eloïse 09 January 2017 (has links)
En attente d'autorisation pour diffusion du résumé / En attente d'autorisation pour diffusion du résumé
|
4 |
Etude fonctionnelle du dégradosome d'Escherichia coli et régulation de la RNase E par phosphorylationToesca, Isabelle 17 March 2005 (has links) (PDF)
Le dégradosome d'E. coli est un complexe protéique impliqué dans la dégradation des ARNm constitué de quatre protéines majeures : RNase E, PNPase, RhlB et l'Enolase. Dans le but de mieux comprendre l'action du dégradosome, des études de l'interaction de RhlB et des autres hélicases DEAD-box de la cellule avec la RNase E ont été menées. Deux sites distincts d'interaction ont été mis en évidence dont l'un spécifique de RhlB. Ceci suggère l'existence de dégradosome alternatif différents selon les conditions de croissance. Des travaux menés sur l'Enolase afin de déterminer son rôle au sein du complexe semblent écarter un rôle structural du complexe ou global de la dégradation des ARNm. L'hypothèse d'un effet plus spécifique est privilégiée. Enfin, des travaux sur la régulation de la RNase E par phosphorylation ont conduit à plusieurs modèles de mécanismes son inhibition par ce processus. Une relation étroite entre le domaine NTH et CTH de la RNase E a ainsi été mise en évidence. De plus, il semble qu'une kinase endogène de E. coli puisse phosphoryler le CTH de la RNase E, uniquement en absence du NTH.
|
5 |
Auto-assemblage de la protéine bactérienne Hfq, actrice du métabolisme de l’ARN : rôle structural du domaine C-terminal. / Self-assembly of the bacterial protein Hfq, an actor of RNA metabolism : structural role of the C-terminal domain.Malabirade, Antoine, Baptiste, 06 October 2017 (has links)
La régulation de l’expression génique par des ARNs permet une réponse rapide et polyvalente des cellules à des changements environnementaux. Cependant, elle nécessite souvent des partenaires protéiques. La protéine bactérienne Hfq en est un bon exemple. Facteur de virulence, elle est présente chez une variété de procaryotes et intervient dans nombre de circuits de régulation. Structurellement, Hfq adopte un repliement caractéristique, le repliement Sm. Ainsi, Les feuillets β qui la constituent se regroupent et forment un hexamère toroïdal. Outre cette région N-terminale, il existe aussi parfois une région C-terminale (CTR) de séquence et de longueur variables. Chez E. coli, cette région comprend une trentaine de résidus et est prédite comme non-structurée. Jusqu’à présent, son rôle n’a été que peu étudié.Ce travail de thèse met en lumière de nouvelles pistes quant à la fonction du CTR. Nous avons constaté sa capacité à former des fibres amyloïdes, expliquant la formation de structures auto-assemblées in vivo. De plus, la protéine est capable de lier l’ADN et de le condenser fortement in vitro. Cette compaction est complètement dépendante de la présence du CTR, qui permet de ponter les brins d’ADN. Ce résultat suggère une nouvelle fonction de Hfq dans la structuration du chromosome. Enfin, nous avons démontré que ce domaine permet aussi à Hfq de s’assembler à la surface d’une bicouche lipidique, expliquant sa localisation membranaire. La désorganisation de la membrane qui en résulte pourrait permettre le passage d’ARNs dans le milieu extracellulaire, avec d’importantes implications sur la capacité de la bactérie à interagir avec ses voisines et son environnement. / RNA-based regulations of gene expression allow quick and versatile responses from cells to changing environmental conditions. However, these regulations are often protein-mediated. The bacterial protein Hfq is one of the most studied RNA-based regulation partner. Found in various prokaryotes, it is an important virulence factor involved in many cellular processes. Hfq’s structure resembles a torus, formed by multiple β-sheets. Apart from this N-terminal region (NTR), a supplemental C-terminal region (CTR) with variable lengths and sequences may exist in some species. In E. coli, this specific region measures around 30 residues and is predicted as intrinsically disordered. Few studies focused on Hfq-CTR until recently.This work highlights new potential roles for Hfq-CTR. First, this region is able to self-interact and forms amyloid fibers which explains the self-assembled Hfq superstructures observed in vivo. Second, the protein can bind and efficiently condense DNA in vitro, strengthening the suggested role of Hfq in shaping the bacterial chromosome. This compaction is fully dependent on the CTR which is responsible for DNA bridging. Third, the CTR also gives to Hfq the ability to self-assemble on a lipid bilayer, explaining its membrane-localized fraction observed in vivo. The subsequent membrane reorganization might facilitate the release of RNAs in the extracellular medium, with potential implications on bacterial communication and interaction with surrounding cells and environment.
|
6 |
La protéine ribosomique S1 d'Escherichia coli au carrefour de la traduction et de la régulation de l'expression des gènes / Escherichia coli ribosomal protein S1 at the crossroad between translation and gene expressionDuval, Mélodie 06 November 2015 (has links)
La traduction est une étape clef de l’expression des gènes, et mon travail a consisté à étudier l’implication de la protéine ribosomique S1 d’Escherichia coli dans l’initiation de la traduction des ARNm structurés. Mes résultats montrent que 1) S1 est requise pour la formation du complexe d’initiation des ARNm portant une séquence SD faible et/ou des structures stables, 2) elle est dotée d’une activité chaperonne, débobinant les ARNm afin de les placer dans le canal de décodage ; et 3) le ribosome favorise son action. Par la suite, j’ai montré un rôle inattendu de S1 dans la régulation post-transcriptionnelle médiée par les ARNnc. En effet, la dégradation rapide de l’ARNm sodB, induite par l’ARNnc RyhB en absence de fer, est perdue dans une souche dont l’extrémité C-terminale de S1 a été supprimée, montrant ainsi un lien fonctionnel entre S1 et le dégradosome. Ainsi, S1 exerce de multiples fonctions qui se placent au carrefour de la traduction et de la régulation de l’expression des gènes / The translation is a key step for the gene expression, and the aim of my PhD was to analyze the involvment of Escherichia coli ribosomal protein S1 in the translation initiation of structured mRNAs.My results show that 1) S1 is required for the establishment of the active translation initiation complex involving mRNAs with a weak SD sequence and/or stable structures, 2) S1 has a RNA chaperone activity, unwinding the mRNA in order to accommodate it in the decoding channel, and 3) the ribosome promotes its activity.In the second part of my thesis, I unexpectedly showed that S1 is involved in the ncRNAmediated regulation. Indeed, the fast degradation of sodB mRNA, induced by RyhB ncRNA under iron depletion, is impaired in a strain depleted of the C-terminal part of S1 protein, thus highlighting a functional link between S1 and the degradosome.All in one, my results show that S1 is endowed with multiple functions, at the cross-road between translation and regulation of gene expression.
|
7 |
Interaction entre la RNase HI et la RNase E dans le métabolisme des R-loops et la dégradation des ARNms chez Escherichia coliEgbe Bessong, Harmony Jill 02 1900 (has links)
No description available.
|
Page generated in 0.0534 seconds