Spelling suggestions: "subject:"petrovgalerkin c.method"" "subject:"petrovgalerkin 20method""
1 |
Simulação numérica de escoamentos: uma implementação com o método Petrov-Galerkin. / Numerical simulation of flows: an implementation with the Petrov-Galerkin method.Hwang, Eduardo 07 April 2008 (has links)
O método SUPG (\"Streamline Upwind Petrov-Galerkin\") é analisado quanto a sua capacidade de estabilizar oscilações numéricas decorrentes de escoamentos convectivo-difusivos, e de manter a consistência nos resultados. Para esta finalidade, é elaborado um programa computacional como uma implementação algorítmica do método, e simulado o escoamento sobre um cilindro fixo a diferentes números de Reynolds. Ao final, é feita uma revelação sobre a solidez do método. Palavras-chave: escoamento, simulação numérica, método Petrov- Galerkin. / The \"Streamline Upwind Petrov-Galerkin\" method (SUPG) is analyzed with regard to its capability to stabilize numerical oscillations caused by convective-diffusive flows, and to maintain consistency in the results. To this aim, a computational program is elaborated as an algorithmic implementation of the method, and simulated the flow around a fixed cylinder at different Reynolds numbers. At the end, a revelation is made on the method\'s robustness. Keywords: flow, numerical simulation, Petrov-Galerkin method.
|
2 |
Simulação numérica de escoamentos: uma implementação com o método Petrov-Galerkin. / Numerical simulation of flows: an implementation with the Petrov-Galerkin method.Eduardo Hwang 07 April 2008 (has links)
O método SUPG (\"Streamline Upwind Petrov-Galerkin\") é analisado quanto a sua capacidade de estabilizar oscilações numéricas decorrentes de escoamentos convectivo-difusivos, e de manter a consistência nos resultados. Para esta finalidade, é elaborado um programa computacional como uma implementação algorítmica do método, e simulado o escoamento sobre um cilindro fixo a diferentes números de Reynolds. Ao final, é feita uma revelação sobre a solidez do método. Palavras-chave: escoamento, simulação numérica, método Petrov- Galerkin. / The \"Streamline Upwind Petrov-Galerkin\" method (SUPG) is analyzed with regard to its capability to stabilize numerical oscillations caused by convective-diffusive flows, and to maintain consistency in the results. To this aim, a computational program is elaborated as an algorithmic implementation of the method, and simulated the flow around a fixed cylinder at different Reynolds numbers. At the end, a revelation is made on the method\'s robustness. Keywords: flow, numerical simulation, Petrov-Galerkin method.
|
3 |
Finite element simulation of non-Newtonian flow in the converging section of an extrusion die using a penalty function techniqueGhosh, Jayanto K. January 1989 (has links)
No description available.
|
4 |
Solving Optimal Control Time-dependent Diffusion-convection-reaction Equations By Space Time DiscretizationsSeymen, Zahire 01 February 2013 (has links) (PDF)
Optimal control problems (OCPs) governed by convection dominated diffusion-convection-reaction
equations arise in many science and engineering applications such as shape optimization of the technological
devices, identification of parameters in environmental processes and flow control problems.
A characteristic feature of convection dominated optimization problems is the presence of sharp layers.
In this case, the Galerkin finite element method performs poorly and leads to oscillatory solutions.
Hence, these problems require stabilization techniques to resolve boundary and interior layers accurately.
The Streamline Upwind Petrov-Galerkin (SUPG) method is one of the most popular stabilization
technique for solving convection dominated OCPs.
The focus of this thesis is the application and analysis of the SUPG method for distributed and
boundary OCPs governed by evolutionary diffusion-convection-reaction equations. There are two approaches
for solving these problems: optimize-then-discretize and discretize-then-optimize. For the
optimize-then-discretize method, the time-dependent OCPs is transformed to a biharmonic equation,
where space and time are treated equally. The resulting optimality system is solved by the finite
element package COMSOL. For the discretize-then-optimize approach, we have used the so called allv
at-once method, where the fully discrete optimality system is solved as a saddle point problem at once
for all time steps. A priori error bounds are derived for the state, adjoint, and controls by applying
linear finite element discretization with SUPG method in space and using backward Euler, Crank-
Nicolson and semi-implicit methods in time. The stabilization parameter is chosen for the convection
dominated problem so that the error bounds are balanced to obtain L2 error estimates. Numerical examples
with and without control constraints for distributed and boundary control problems confirm the
effectiveness of both approaches and confirm a priori error estimates for the discretize-then-optimize
approach.
|
5 |
Integrated Sinc Method for Composite and Hybrid StructuresSlemp, Wesley Campbell Hop 07 July 2010 (has links)
Composite materials and hybrid materials such as fiber-metal laminates, and functionally graded materials are increasingly common in application in aerospace structures. However, adhesive bonding of dissimilar materials makes these materials susceptible to delamination. The use of integrated Sinc methods for predicting interlaminar failure in laminated composites and hybrid material systems was examined. Because the Sinc methods first approximate the highest-order derivative in the governing equation, the in-plane derivatives of in-plane strain needed to obtain interlaminar stresses by integration of the equilibrium equations of 3D elasticity are known without post-processing. Interlaminar stresses obtained with the Sinc method based on Interpolation of Highest derivative were compared for the first-order and third-order shear deformable theories, the refined zigzag beam theory and the higher-order shear and normal deformable beam theory. The results indicate that the interlaminar stresses by the zigzag theory compare well with those obtained by a 3D finite element analysis, while the traditional equivalent single layer theories perform well for some laminates.
The philosophy of the Sinc method based on Interpolation of Highest Derivative was extended to create a novel weak form based approach called the Integrated Local Petrov-Galerkin Sinc Method. The Integrated Local Petrov-Galerkin Sinc Method is easily utilized for boundary-value problem on non-rectangular domains as demonstrated for analysis of elastic and elastic-plastic plane-stress panels with elliptical notches. The numerical results showed excellent accuracy compared to similar results obtained with the finite element method.
The Integrated Local Petrov-Galerkin Sinc Method was used to analyze interlaminar debonding of composite and fiber-metal laminated beams. A double-cantilever beam and a fixed-ratio mixed mode beam were analyzed using the Integrated Local Petrov-Galerkin Sinc Method and the results were shown to correlate well with those by the finite element method. An adaptive Sinc point distribution technique was implemented for the delamination analysis which significantly improved the methods accuracy for the present problem. Delamination of a GLARE, plane-strain specimen was also analyzed using the Integrated Local Petrov-Galerkin Sinc Method. The results correlate well with 2D, plane-strain analysis by the finite element method, including interlaminar stresses obtained by through-the-thickness integration of the equilibrium equations of 3D elasticity. / Ph. D.
|
6 |
Analysis of Rotating Beam Problems using Meshless Methods and Finite Element MethodsPanchore, Vijay January 2016 (has links) (PDF)
A partial differential equation in space and time represents the physics of rotating beams. Mostly, the numerical solution of such an equation is an available option as analytical solutions are not feasible even for a uniform rotating beam. Although the numerical solutions can be obtained with a number of combinations (in space and time), one tries to seek for a better alternative. In this work, various numerical techniques are applied to the rotating beam problems: finite element method, meshless methods, and B-spline finite element methods. These methods are applied to the governing differential equations of a rotating Euler-Bernoulli beam, rotating Timoshenko beam, rotating Rayleigh beam, and cracked Euler-Bernoulli beam. This work provides some elegant alternatives to the solutions available in the literature, which are more efficient than the existing methods: the p-version of finite element in time for obtaining the time response of periodic ordinary differential equations governing helicopter rotor blade dynamics, the symmetric matrix formulation for a rotating Euler-Bernoulli beam free vibration problem using the Galerkin method, and solution for the Timoshenko beam governing differential equation for free vibration using the meshless methods. Also, the cracked Euler-Bernoulli beam free vibration problem is solved where the importance of higher order polynomial approximation is shown. Finally, the overall response of rotating blades subjected to aerodynamic forcing is obtained in uncoupled trim where the response is independent of the overall helicopter configuration. Stability analysis for the rotor blade in hover and forward flight is also performed using Floquet theory for periodic differential equations.
|
7 |
Kinetic Streamlined-Upwind Petrov Galerkin Methods for Hyperbolic Partial Differential EquationsDilip, Jagtap Ameya January 2016 (has links) (PDF)
In the last half a century, Computational Fluid Dynamics (CFD) has been established as an important complementary part and some times a significant alternative to Experimental and Theoretical Fluid Dynamics. Development of efficient computational algorithms for digital simulation of fluid flows has been an ongoing research effort in CFD.
An accurate numerical simulation of compressible Euler equations, which are the gov-erning equations of high speed flows, is important in many engineering applications like designing of aerospace vehicles and their components. Due to nonlinear nature of governing equations, such flows admit solutions involving discontinuities like shock waves and contact discontinuities. Hence, it is nontrivial to capture all these essential features of the flows numerically. There are various numerical methods available in the literature, the popular ones among them being the Finite Volume Method (FVM), Finite Difference Method (FDM), Finite Element Method (FEM) and Spectral method. Kinetic theory based algorithms for solving Euler equations are quite popular in finite volume framework due to their ability to connect Boltzmann equation with Euler equations. In kinetic framework, instead of dealing directly with nonlinear partial differential equations one needs to deal with a simple linear partial differential equation. Recently, FEM has emerged as a significant alternative to FVM because it can handle complex geometries with ease and unlike in FVM, achieving higher order accuracy is easier. High speed flows governed by compressible Euler equations are hyperbolic partial differential equations which are characterized by preferred directions for information propagation. Such flows can not be solved using traditional FEM methods and hence, stabilized methods are typically introduced. Various stabilized finite element methods are available in the literature like Streamlined-Upwind Petrov Galerkin (SUPG) method, Galerkin-Least Squares (GLS) method, Taylor-Galerkin method, Characteristic Galerkin method and Discontinuous Galerkin Method.
In this thesis a novel stabilized finite element method called as Kinetic Streamlined-Upwind Petrov Galerkin (KSUPG) method is formulated. Both explicit and implicit versions of KSUPG scheme are presented. Spectral stability analysis is done for explicit KSUPG scheme to obtain the stable time step. The advantage of proposed scheme is, unlike in SUPG scheme, diffusion vectors are obtained directly from weak KSUPG formulation.
The expression for intrinsic time scale is directly obtained in KSUPG framework. The accuracy and robustness of the proposed scheme is demonstrated by solving various test cases for hyperbolic partial differential equations like Euler equations and inviscid Burgers equation. In the KSUPG scheme, diffusion terms involve computationally expensive error and exponential functions. To decrease the computational cost, two variants of KSUPG scheme, namely, Peculiar Velocity based KSUPG (PV-KSUPG) scheme and Circular distribution based KSUPG (C-KSUPG) scheme are formulated. The PV-KSUPG scheme is based on peculiar velocity based splitting which, upon taking moments, recovers a convection-pressure splitting type algorithm at the macroscopic level. Both explicit and implicit versions of PV-KSUPG scheme are presented. Unlike KSUPG and PV-KUPG schemes where Maxwellian distribution function is used, the C-KUSPG scheme uses a simpler circular distribution function instead of a Maxwellian distribution function. Apart from being computationally less expensive it is less diffusive than KSUPG scheme.
|
8 |
Sur une méthode numérique ondelettes / domaines fictifs lisses pour l'approximation de problèmes de StefanYin, Ping 25 January 2011 (has links)
Notre travail est consacré à la définition, l'analyse et l'implémentation de nouveaux algorithmes numériques pour l'approximation de la solution de problèmes à 2 dimensions du type problème de Stefan. Dans ce type de problèmes une équation aux dérivée partielle parabolique posée sur un ouvert omega quelconque est couplée avec une autre équation qui contrôle la frontière gamma du domaine lui même. Les difficultés classiquement associés à ce type de problèmes sont: la formulation en particulier de l'équation pour le bord du domaine, l'approximation de la solution liées à la forme quelconque du domaine, les difficultés associées à l'implication des opérateurs de trace (approximation, conditionnement), les difficultés liées aux de régularité fonds du domaine.De plus, de nombreuse situations d'intérêt physique par exemple demandent des approximations de haut degré. Notre travail s'appuie sur une formulation de type espaces de niveaux (level set) pour l'équation du domaine, et une formulation de type domaine fictif (Omega) pour l'équation initiale.Le contrôle des conditions aux limites est effectué à partir de multiplicateurs de Lagrange agissant sur une frontière (Gamma) dite de contrôle différente de frontière(gamma) du domaine (omega). L'approximation est faite à partir d'un schéma aux différences finies pour les dérivées temporelle et une discrétisation à l'aide d'ondelettes bi-dimensionelles pour l'équation initiale et une dimensionnelle pour les multiplicateurs de Lagrange. Des opérateurs de prolongement de omega à Omega sont également construits à partir d'analyse multiéchelle sur l'intervalle. Nous obtenons aussi: une formulation pour laquelle existence de la solution est démontrées, un algorithme convergent pour laquelle une estimation globale d'erreur (sur Omega) est établie, une estimation intérieure prouvant sur l'erreur à un domaine omega, overline omega subset Xi, des estimations sur les conditionnement associés a l'opérateur de trace, des algorithmes de prolongement régulier. Différentes expériences numériques en 1D ou 2D sont effectuées. Le manuscrit est organisé comme suit: Le premier chapitre rappelle la construction des analyses multirésolutions, les propriétés importantes des ondelettes et des algorithmes numériques liées à l'application d'opérateurs aux dérivées partielles. Le second chapitre donne un aperçu des méthodes de domaine fictif classiques, approchées par la méthode de Galerkin ou de Petrov-Galerkin. Nous y découvrons les limites de ces méthodes ce qui donne la direction de notre travail. Le chapitre trois présente notre nouvelle méthode de domaine fictif que l'on appelle méthode de domaine fictif lisse.L'approximation est grâce à une méthode d'ondelettes de type Petrov-Galerkin. Cette section contient l'analyse théorique et décrit la mise en œuvre numérique. Différents avantages de cette méthode sont démontrés. Le chapitre quatre introduit une technique de prolongement régulier. Nous l'appliquons à des problèmes elliptiques en 1D ou 2D.\par Le cinquième chapitre décrit quelques simulations numériques de problème de Stefan. Nous testons l'efficacité de notre méthode sur différents exemples dont le problème de Stefan à 2 phases avec conditions aux limites de Gibbs-Thomson. / Our work is devoted to the definition, analysis and implementation of a new algorithms for numerical approximation of the solution of 2 dimensional Stefan problem. In this type of problem a parabolic partial differential equation defined on an openset Omega is coupled with another equation which controls the boundary gamma of the domain itself. The difficulties traditionally associated with this type of problems are: the particular formulation of equation on the boundary of domain, the approximation of the solution defined on general domain, the difficulties associated with the involvement of trace operation (approximation, conditioning), the difficulties associated with the regularity of domain. Addition, many situations of physical interest, for example,require approximations of high degree. Our work is based on aformulation of type level set for the equation on the domain, and aformulation of type fictitious domain (Omega) for the initialequation. The control of boundary conditions is carried out throughLagrange multipliers on boundary (Gamma), called control boundary, which is different with boundary (gamma) of the domain (omega). The approximation is done by a finite difference scheme for time derivative and the discretization by bi-dimensional wave letfor the initial equation and one-dimensional wave let for the Lagrange multipliers. The extension operators from omega to Omega are also constructed from multiresolution analysis on theinterval. We also obtain: a formulation for which the existence of solution is demonstrated, a convergent algorithm for which a global estimate error (on Omega) is established, interior error estimate on domain omega, overline omega subset estimates on the conditioning related to the trace operator, algorithms of smooth extension. Different numerical experiments in 1D or 2D are implemented. The work is organized as follows:The first chapter recalls theconstruction of multiresolution analysis, important properties of wavelet and numerical algorithms. The second chapter gives an outline of classical fictitious domain method, using Galerkin or Petrov-Galerkin method. We also describe the limitation of this method and point out the direction of our work.\par The third chapter presents a smooth fictitious domain method. It is coupled with Petrov-Galerkin wavelet method for elliptic equations. This section contains the theoretical analysis and numerical implementation to embody the advantages of this new method. The fourth chapter introduces a smooth extension technique. We apply it to elliptic problem with smooth fictitious domain method in 1D and 2D. The fifth chapter is the numerical simulation of the Stefan problem. The property of B-spline render us to exactly calculate the curvature on the moving boundary. We use two examples to test the efficiency of our new method. Then it is used to resolve the two-phase Stefan problem with Gibbs-Thomson boundary condition as an experimental case.
|
9 |
Stabilized finite element methods for convection-diffusion-reaction, helmholtz and stokes problemsNadukandi, Prashanth 13 May 2011 (has links)
We present three new stabilized finite element (FE) based Petrov-Galerkin methods for the convection-diffusionreaction
(CDR), the Helmholtz and the Stokes problems, respectively. The work embarks upon a priori analysis of a
consistency recovery procedure for some stabilization methods belonging to the Petrov- Galerkin framework. It was
ound that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory
numerical methods is not appropriate when consistency recovery methods are employed. Hence, with respect to
convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution
Petrov-Galerkin (HRPG) method for the CDR problem. The structure of the method in 1 D is identical to the consistent
approximate upwind (CAU) Petrov-Galerkin method [doi: 10.1016/0045-7825(88)90108-9] except for the definitions of
he stabilization parameters. Such a structure may also be attained via the Finite Calculus (FIC) procedure [doi:
10.1 016/S0045-7825(97)00119-9] by an appropriate definition of the characteristic length. The prefix high-resolution is
used here in the sense popularized by Harten, i.e. second order accuracy for smooth/regular regimes and good
shock-capturing in non-regular re9jmes. The design procedure in 1 D embarks on the problem of circumventing the
Gibbs phenomenon observed in L projections. Next, we study the conditions on the stabilization parameters to
ircumvent the global oscillations due to the convective term. A conjuncture of the two results is made to deal with the
problem at hand that is usually plagued by Gibbs, global and dispersive oscillations in the numerical solution. A multi
dimensional extension of the HRPG method using multi-linear block finite elements is also presented.
Next, we propose a higher-order compact scheme (involving two parameters) on structured meshes for the Helmholtz
equation. Making the parameters equal, we recover the alpha-interpolation of the Galerkin finite element method
(FEM) and the classical central finite difference method. In 1 D this scheme is identical to the alpha-interpolation
method [doi: 10.1 016/0771 -050X(82)90002-X] and in 2D choosing the value 0.5 for both the parameters, we recover
he generalized fourth-order compact Pade approximation [doi: 10.1 006/jcph.1995.1134, doi: 10.1016/S0045-
7825(98)00023-1] (therein using the parameter V = 2). We follow [doi: 10.1 016/0045-7825(95)00890-X] for the
analysis of this scheme and its performance on square meshes is compared with that of the quasi-stabilized FEM [doi:
10.1016/0045-7825(95)00890-X]. Generic expressions for the parameters are given that guarantees a dispersion
accuracy of sixth-order should the parameters be distinct and fourth-order should they be equal. In the later case, an
expression for the parameter is given that minimizes the maximum relative phase error in 2D. A Petrov-Galerkin
ormulation that yields the aforesaid scheme on structured meshes is also presented. Convergence studies of the
error in the L2 norm, the H1 semi-norm and the I ~ Euclidean norm is done and the pollution effect is found to be small. / Presentamos tres nuevos metodos estabilizados de tipo Petrov- Galerkin basado en elementos finitos (FE) para los
problemas de convecci6n-difusi6n- reacci6n (CDR), de Helmholtz y de Stokes, respectivamente. El trabajo comienza
con un analisis a priori de un metodo de recuperaci6n de la consistencia de algunos metodos de estabilizaci6n que
pertenecen al marco de Petrov-Galerkin. Hallamos que el uso de algunas de las practicas estandar (por ejemplo, la
eoria de Matriz-M) para el diserio de metodos numericos esencialmente no oscilatorios no es apropiado cuando
utilizamos los metodos de recu eraci6n de la consistencia. Por 10 tanto, con res ecto a la estabilizaci6n de
conveccion, no preferimos tales metodos de recuperacion . A continuacion, presentamos el diser'io de un metodo de
Petrov-Galerkin de alta-resolucion (HRPG) para el problema CDR. La estructura del metodo en 10 es identico al
metodo CAU [doi: 10.1016/0045-7825(88)90108-9] excepto en la definicion de los parametros de estabilizacion. Esta
estructura tambien se puede obtener a traves de la formulacion del calculo finito (FIC) [doi: 10.1 016/S0045-
7825(97)00119-9] usando una definicion adecuada de la longitud caracteristica. El prefijo de "alta-resolucion" se
utiliza aqui en el sentido popularizado por Harten, es decir, tener una solucion con una precision de segundo orden
en los regimenes suaves y ser esencialmente no oscilatoria en los regimenes no regulares. El diser'io en 10 se
embarca en el problema de eludir el fenomeno de Gibbs observado en las proyecciones de tipo L2. A continuacion,
estudiamos las condiciones de los parametros de estabilizacion para evitar las oscilaciones globales debido al
ermino convectivo. Combinamos los dos resultados (una conjetura) para tratar el problema COR, cuya solucion
numerica sufre de oscilaciones numericas del tipo global, Gibbs y dispersiva. Tambien presentamos una extension
multidimensional del metodo HRPG utilizando los elementos finitos multi-lineales.
fa. continuacion, proponemos un esquema compacto de orden superior (que incluye dos parametros) en mallas
estructuradas para la ecuacion de Helmholtz. Haciendo igual ambos parametros, se recupera la interpolacion lineal
del metodo de elementos finitos (FEM) de tipo Galerkin y el clasico metodo de diferencias finitas centradas. En 10
este esquema es identico al metodo AIM [doi: 10.1 016/0771 -050X(82)90002-X] y en 20 eligiendo el valor de 0,5 para
ambos parametros, se recupera el esquema compacto de cuarto orden de Pade generalizada en [doi:
10.1 006/jcph.1 995.1134, doi: 10.1 016/S0045-7825(98)00023-1] (con el parametro V = 2). Seguimos [doi:
10.1 016/0045-7825(95)00890-X] para el analisis de este esquema y comparamos su rendimiento en las mallas
uniformes con el de "FEM cuasi-estabilizado" (QSFEM) [doi: 10.1016/0045-7825 (95) 00890-X]. Presentamos
expresiones genericas de los para metros que garantiza una precision dispersiva de sexto orden si ambos parametros
son distintos y de cuarto orden en caso de ser iguales. En este ultimo caso, presentamos la expresion del parametro
que minimiza el error maxima de fase relativa en 20. Tambien proponemos una formulacion de tipo Petrov-Galerkin
~ue recupera los esquemas antes mencionados en mallas estructuradas. Presentamos estudios de convergencia del
error en la norma de tipo L2, la semi-norma de tipo H1 y la norma Euclidiana tipo I~ y mostramos que la perdida de
estabilidad del operador de Helmholtz ("pollution effect") es incluso pequer'ia para grandes numeros de onda.
Por ultimo, presentamos una coleccion de metodos FE estabilizado para el problema de Stokes desarrollados a
raves del metodo FIC de primer orden y de segundo orden. Mostramos que varios metodos FE de estabilizacion
existentes y conocidos como el metodo de penalizacion, el metodo de Galerkin de minimos cuadrados (GLS) [doi:
10.1016/0045-7825(86)90025-3], el metodo PGP (estabilizado a traves de la proyeccion del gradiente de presion)
[doi: 10.1 016/S0045-7825(96)01154-1] Y el metodo OSS (estabilizado a traves de las sub-escalas ortogonales) [doi:
10.1016/S0045-7825(00)00254-1] se recuperan del marco general de FIC. Oesarrollamos una nueva familia de
metodos FE, en adelante denominado como PLS (estabilizado a traves del Laplaciano de presion) con las formas no
lineales y consistentes de los parametros de estabilizacion. Una caracteristica distintiva de la familia de los metodos
PLS es que son no lineales y basados en el residuo, es decir, los terminos de estabilizacion dependera de los
residuos discretos del momento y/o las ecuaciones de incompresibilidad. Oiscutimos las ventajas y desventajas de
estas tecnicas de estabilizaci6n y presentamos varios ejemplos de aplicacion
|
Page generated in 0.0398 seconds