• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 126
  • 24
  • 21
  • 2
  • 1
  • Tagged with
  • 360
  • 93
  • 88
  • 83
  • 46
  • 46
  • 45
  • 45
  • 44
  • 41
  • 40
  • 38
  • 35
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Grünlandgesellschaften im Rothaargebirge im Beziehungsgefüge geoökologischer Prozessgrössen : mit 27 Tabellen /

Vigano, Wieland. January 1997 (has links) (PDF)
Zugl.: Bochum, Univ., Diss.
152

Diffusion kinetics of organic compounds and water in plant cuticular model wax under the influence of diffusing barrier-modifying adjuvants / Diffusionskinetiken organischer Verbindungen und Wasser in pflanzlichem kutikulärem Modellwachs unter dem Einfluss von diffundierenden, barriere-modifizierenden Adjuvantien

Kunz, Marcel January 2023 (has links) (PDF)
To reach their target site, systemic pesticides must enter the plant from a spray droplet applied in the field. The uptake of an active ingredient (AI) takes place via the barrier-forming cuticular membrane, which is the outermost layer of the plant, separating it from the surrounding environment. Formulations are usually used which, in addition to the AI, also contain stabilizers and adjuvants. Adjuvants can either have surface-active properties or they act directly as barrier-modifying agents. The latter are grouped in the class of accelerating adjuvants, whereby individual variants may also have surface-active properties. The uptake of a pesticide from a spray droplet depends essentially on its permeability through the cuticular barrier. Permeability defines a combined parameter, which is the product of AI mobility and AI solubility within the cuticle. In recent decades, several tools have been developed that allowed the determination of individual parameters of organic compound penetration across the cuticular membrane. Nevertheless, earlier studies showed that mainly cuticular waxes are the barrier-determining component of the cuticular membrane and additionally, it was shown that mainly the very-long-chain aliphatic compounds (VLCAs) are responsible for establishing an effective barrier. However, the barrier-determining role of the individual VLCAs, being classified according to their respective functional groups, is still unknown. Therefore, the following objectives were pursued and achieved in this work: (1) A new ATR-FTIR-based approach was developed to measure the temperature-dependent real-time diffusion kinetics of organic models for active ingredients (AIs) in paraffin wax, exclusively consisting of very-long chain alkanes. (2) The developed ATR-FTIR approach was applied to determine the diffusion kinetics of self-accelerating adjuvants in cuticular model waxes of different VLCA composition. At the same time, wax-specific changes were recorded in the respective IR spectra, which provided information about the respective wax modification. (3) The ATR-FTIR method was used to characterize the diffusion kinetics, as well as to determine the wax-specific sorption capacities for an AI-modeling organic compound and water in cuticular model waxes after adjuvant treatment. Regarding the individual chemical compositions and structures, conclusions were drawn about the adjuvant-specific modes of action (MoA). In the first chapter, the ATR-FTIR based approach to determine organic compound diffusion kinetics in paraffin wax was successfully established. The diffusion kinetics of the AI modelling organic compounds heptyl parabene (HPB) and 4-cyanophenol (CNP) were recorded, comprising different lipophilicities and molecular volumes typical for AIs used in pesticide formulations. Derived diffusion coefficients ranged within 10-15 m2 s-1, thus being thoroughly higher than those obtained from previous experiments using an approach solely investigating desorption kinetics in reconstituted cuticular waxes. An ln-linear dependence between the diffusion coefficients and the applied diffusion temperature was demonstrated for the first time in cuticular model wax, from which activation energies were derived. The determined activation energies were 66.2 ± 7.4 kJ mol-1 and 56.4 ± 9.8 kJ mol-1, being in the expected range of already well-founded activation energies required for organic compound diffusion across cuticular membranes, which again confirmed the significant contribution of waxes to the cuticular barrier. Deviations from the assumed Fickian diffusion were attributed to co-occurring water diffusion and apparatus-specific properties. In the second and third chapter, mainly the diffusion kinetics of accelerating adjuvants in the cuticular model waxes candelilla wax and carnauba wax were investigated, and simultaneously recorded changes in the wax-specific portion of the IR spectrum were interpreted as indications of plasticization. For this purpose, the oil derivative methyl oleate, as well as the organophosphate ester TEHP and three non-ionic monodisperse alcohol ethoxylates (AEs) C12E2, C12E4 and C12E6 were selected. Strong dependence of diffusion on the respective principal components of the mainly aliphatic waxes was demonstrated. The diffusion kinetics of the investigated adjuvants were faster in the n-alkane dominated candelilla wax than in the alkyl ester dominated carnauba wax. Furthermore, the equilibrium absorptions, indicating equilibrium concentrations, were also higher in candelilla wax than in carnauba wax. It was concluded that alkyl ester dominated waxes feature higher resistance to diffusion of accelerating adjuvants than alkane dominated waxes with shorter average chain lengths due to their structural integrity. This was also found either concerning candelilla/policosanol (n-alcohol) or candelilla/rice bran wax (alkyl-esters) blends: with increasing alcohol concentration, the barrier function was decreased, whereas it was increased with increasing alkyl ester concentration. However, due to the high variability of the individual diffusion curves, only a trend could be assumed here, but significant differences were not shown. The variability itself was described in terms of fluctuating crystalline arrangements and partial phase separation of the respective wax mixtures, which had inevitable effects on the adjuvant diffusion. However, diffusion kinetics also strongly depended on the studied adjuvants. Significantly slower methyl oleate diffusion accompanied by a less pronounced reduction in orthorhombic crystallinity was found in carnauba wax than in candelilla wax, whereas TEHP diffusion was significantly less dependent on the respective wax structure and therefore induced considerable plasticization in both waxes. Of particular interest was the AE diffusion into both waxes. Differences in diffusion kinetics were also found here between candelilla blends and carnauba wax. However, these depended equally on the degree of ethoxylation of the respective AEs. The lipophilic C12E2 showed approximately Fickian diffusion kinetics in both waxes, accompanied by a drastic reduction in orthorhombic crystallinity, especially in candelilla wax, whereas the more hydrophilic C12E6 showed significantly retarded diffusion kinetics associated with a smaller effect on orthorhombic crystallinity. The individual diffusion kinetics of the investigated adjuvants sometimes showed drastic deviations from the Fickian diffusion model, indicating a self-accelerating effect. Hence, adjuvant diffusion kinetics were accompanied by a distinct initial lag phase, indicating a critical concentration in the wax necessary for effective penetration, leading to sigmoidal rather than to exponential diffusion kinetics. The last chapter dealt with the adjuvant-affected diffusion of the AI modelling CNP in candelilla and carnauba wax. Using ATR-FTIR, diffusion kinetics were recorded after adjuvant treatment, all of which were fully explicable based on the Fickian model, with high diffusion coefficients ranging from 10-14 to 10-13 m2 s-1. It is obvious that the diffusion coefficients presented in this work consistently demonstrated plasticization induced accelerated CNP mobilities. Furthermore, CNP equilibrium concentrations were derived, from which partition- and permeability coefficients could be determined. Significant differences between diffusion coefficients (mobility) and partition coefficients (solubility) were found on the one hand depending on the respective waxes, and on the other hand depending on treatment with respective adjuvants. Mobility was higher in candelilla wax than in carnauba wax only after methyl oleate treatment. Treatment with TEHP and AEs resulted in higher CNP mobility in the more polar alkyl ester dominated carnauba wax. The partition coefficients, on the other hand, were significantly lower after methyl oleate treatment in both candelilla and carnauba wax as followed by TEHP or AE treatment. Models were designed for the CNP penetration mode considering the respective adjuvants in both investigated waxes. Co-penetrating water, which is the main ingredient of spray formulations applied in the field, was likely the reason for the drastic differences in adjuvant efficacy. Especially the investigated AEs favored an enormous water uptake in both waxes with increasing ethoxylation level. Surprisingly, this effect was also found for the lipophilic TEHP in both waxes. This led to the assumption that the AI permeability is not exclusively determined by adjuvant induced plasticization, but also depends on a “secondary plasticization”, induced by adjuvant-attracted co-penetrating water, consequently leading to swelling and drastic destabilization of the crystalline wax structure. The successful establishment of the presented ATR-FTIR method represents a milestone for the study of adjuvant and AI diffusion kinetics in cuticular waxes. In particular, the simultaneously detectable wax modification and, moreover, the determinable water uptake form a perfect basis to establish the ATR-FTIR system as a universal screening tool for wax-adjuvants-AI-water interaction in crop protection science. / Um ihren Zielort zu erreichen, müssen systemische Pestizide aus einem auf dem Feld ausgebrachten Sprühtropfen in die Pflanze gelangen. Die Aufnahme eines Wirkstoffs (AI) erfolgt über die barrierebildende Kutikularmembran, die äußerste Schicht der Pflanze, die sie von der Umgebung trennt. In der Regel werden Formulierungen verwendet, die neben dem AI auch Stabilisatoren und Adjuvantien enthalten. Adjuvantien können entweder oberflächenaktive Eigenschaften haben oder sie wirken direkt als barrieremodifizierende Substanzen. Letztere werden in der Klasse der beschleunigenden Adjuvantien zusammengefasst, wobei einzelne Varianten auch oberflächenaktive Eigenschaften haben können. Die Aufnahme eines Pestizids aus einem Sprühtropfen hängt im Wesentlichen von seiner Durchlässigkeit durch die kutikuläre Barriere ab. Die Permeabilität ist ein kombinierter Parameter, der sich aus der Mobilität und der Löslichkeit des Wirkstoffs in der Kutikula ergibt. In den letzten Jahrzehnten wurden mehrere Methoden entwickelt, die die Bestimmung einzelner Parameter der Permeation organischer Verbindungen durch die Kutikularmembran ermöglichen. Frühere Studien zeigten jedoch, dass hauptsächlich kutikuläre Wachse die barrierebestimmende Komponente der Kutikula darstellen, und darüber hinaus wurde gezeigt, dass hauptsächlich die sehr langkettigen aliphatischen Verbindungen (VLCAs) für die Errichtung einer wirksamen Barriere verantwortlich sind. Die Rolle der einzelnen VLCAs, die nach ihren jeweiligen funktionellen Gruppen klassifiziert werden, ist jedoch in Bezug auf die Bestimmung der Barriereeigenschaften noch unbekannt. Daher wurde in dieser Arbeit folgende Ziele verfolgt und erreicht: (1) Ein neuer ATR-FTIR-basierter Ansatz wurde entwickelt, um die temperaturabhängige Echtzeit-Diffusionskinetik von organischen Modellen für Wirkstoffe (AI) in ausschließlich aus Alkanen bestehendem Paraffinwachs zu messen. (2) Der entwickelte ATR-FTIR-Ansatz wurde zur Bestimmung der Diffusionskinetik von selbstbeschleunigenden Adjuvantien in kutikulären Modellwachsen unterschiedlicher VLCA-Zusammensetzung angewendet. Gleichzeitig wurden wachsspezifische Veränderungen in den jeweiligen IR-Spektren aufgezeichnet, welche Informationen über die jeweilige Wachsmodifikation lieferten. (3) Die ATR-FTIR-Methode wurde zur Charakterisierung der Diffusionskinetik, sowie zur Bestimmung der wachsspezifischen Sorptionskapazitäten für eine AI-modellierende organische Verbindung und von Wasser in kutikulären Modellwachsen nach Adjuvans-Behandlung verwendet. Im Hinblick auf die einzelnen chemischen Zusammensetzungen und Strukturen wurden Rückschlüsse auf die adjuvansspezifischen Wirkweisen (MoA) gezogen. Im ersten Kapitel wurde der ATR-FTIR-basierte Ansatz zur Bestimmung der Diffusionskinetik organischer Verbindungen in Paraffinwachs erfolgreich etabliert. Es wurde die Diffusionskinetik der organischen AI-Modellverbindungen Heptylparaben (HPB) und 4-Cyanophenol (CNP) aufgezeichnet, die unterschiedliche Lipophilitäten und Molekülvolumina aufweisen, wie sie für AIs in Pestizidformulierungen typisch sind. Die abgeleiteten Diffusionskoeffizienten lagen im Bereich von 10-15 m2 s-1 und waren damit höher als die zuvor in rekonstituierten kutikulären Wachsen beobachteten Diffusionskoeffizienten. Zum ersten Mal wurde eine ln-lineare Abhängigkeit zwischen den Diffusionskoeffizienten und der angewandten Diffusionstemperatur in kutikulärem Modellwachs nachgewiesen, aus der schließlich Aktivierungsenergien abgeleitet wurden. Die ermittelten Aktivierungsenergien betrugen 66.2 ± 7.4 kJ mol-1 und 56.4 ± 9,8 kJ mol-1 und lagen damit im erwarteten Bereich der bereits gut begründeten Aktivierungsenergien, die für die Diffusion organischer Verbindungen durch kutikuläre Membranen erforderlich sind. Dies bestätigte abermals den signifikanten Beitrag der Wachse zur kutikulären Barriere. Abweichungen von der angenommenen Fick'schen Diffusion wurden auf die gleichzeitig stattfindende Wasserdiffusion und gerätespezifische Artefakte zurückgeführt. Im zweiten und dritten Kapitel wurde vor allem die Diffusionskinetik von beschleunigenden Adjuvantien in den kutikulären Modellwachsen Candelillawachs und Carnaubawachs untersucht und gleichzeitig aufgezeichnete Veränderungen im wachspezifischen Teil des IR-Spektrums als Hinweise auf eine Plastifizierung interpretiert. Zu diesem Zweck wurden das Ölderivat Methyloleat, sowie der Organophosphatester TEHP und drei nichtionische monodisperse Alkoholethoxylate (AEs) C12E2, C12E4 und C12E6 ausgewählt. Es wurde eine starke Abhängigkeit der Adjuvansdiffusion von den jeweiligen Hauptkomponenten der hauptsächlich aliphatisch strukturierten Wachse nachgewiesen. So war die Diffusionskinetik der untersuchten Adjuvantien in dem hauptsächlich aus n-Alkanen bestehenden Candelillawachs schneller als in dem von Alkylestern dominierten Carnaubawachs. Darüber hinaus waren die Gleichgewichtsabsorptionen, die auf Gleichgewichtskonzentrationen hinweisen, in Candelillawachs ebenfalls höher als in Carnaubawachs. Daraus wurde gefolgert, dass Wachse mit hohen Alkylesteranteilen aufgrund ihrer strukturellen Integrität einen höheren Widerstand gegen die Diffusion von beschleunigenden Adjuvantien aufweisen als Wachse mit kürzeren durchschnittlichen Kettenlängen. Dies wurde auch bei Candelilla/Policosanol- (n-Alkohol) oder Candelilla/Reiskleiewachs-Mischungen (Alkylester) festgestellt: Mit steigender Alkoholkonzentration nahm die Barrierefunktion ab, während sie mit steigender Alkylesterkonzentration zunahm. Aufgrund der hohen Variabilität der einzelnen Diffusionskurven konnte hier jedoch nur ein Trend vermutet werden, signifikante Unterschiede zeigten sich jedoch nicht. Die Variabilität selbst wurde mit schwankenden kristallinen Anordnungen und teilweiser Phasentrennung der jeweiligen Wachsmischungen erklärt, die sich zwangsläufig auf die Diffusion der Adjuvantien auswirkten. Die Diffusionskinetik hing jedoch auch stark von den untersuchten Adjuvantien ab. In Carnaubawachs wurde eine deutlich langsamere Methyloleat-Diffusion festgestellt, die mit einer weniger ausgeprägten Verringerung der orthorhombischen Kristallinität einherging als in Candelillawachs, während die TEHP-Diffusion deutlich weniger von der jeweiligen Wachsstruktur abhängig war und in beiden Wachsen eine erhebliche Plastifizierung bewirkte. Von besonderem Interesse war die AE-Diffusion in den untersuchten Wachsen. Auch hier wurden Unterschiede in der Diffusionskinetik zwischen Candelillamischungen und Carnaubawachs festgestellt. Diese hingen jedoch gleichermaßen vom Ethoxylierungsgrad der jeweiligen AEs ab. Das lipophile C12E2 zeigte in beiden Wachsen eine annähernd Fick‘sche Diffusionskinetik, die mit einer drastischen Verringerung der orthorhombischen Kristallinität einherging, insbesondere im Candelillawachs, während das hydrophilere C12E6 eine deutlich verzögerte Diffusionskinetik zeigte, die mit einer geringeren Auswirkung auf die orthorhombische Kristallinität einherging. Die individuellen Diffusionskinetiken der untersuchten Adjuvantien zeigten teilweise drastische Abweichungen vom Fick‘schen Diffusionsmodell, was auf einen selbstbeschleunigenden Effekt hindeutet. Die Diffusionskinetik der Adjuvantien wurde von einer ausgeprägten anfänglichen Verzögerungsphase begleitet, die auf das Erreichen einer kritischen Konzentration im Wachs hindeutet. Es wird angenommen, dass aufgrund der initialen Verzögerungsphase letztlich sigmoidale, statt Fick’sche Diffusionskinetiken vorlagen. Das letzte Kapitel befasste sich mit der adjuvansbeeinflussten Diffusion der für Wirkstoffe modellhaften organischen Substanz CNP in Candelilla- und Carnaubawachs. Mittels ATR-FTIR wurden Diffusionskinetiken nach Adjuvans-Behandlung aufgezeichnet, die alle auf der Grundlage des Fick‘schen Modells vollständig erklärbar waren, einhergehend mit hohen Diffusionskoeffizienten von 10-14 bis 10-13 m2 s-1. Es ist offensichtlich, dass die in dieser Arbeit vorgestellten Diffusionskoeffizienten durchweg eine durch die Plastifizierung bedingte erhöhte CNP-Mobilität belegen. Darüber hinaus wurden CNP-Gleichgewichtskonzentrationen abgeleitet, aus denen Verteilungs- und Permeabilitätskoeffizienten bestimmt werden konnten. Signifikante Unterschiede zwischen Diffusionskoeffizienten (Mobilität) und Verteilungskoeffizienten (Löslichkeit) wurden zum einen in Abhängigkeit von den jeweiligen Wachsen und zum anderen in Abhängigkeit von den jeweiligen Adjuvantien festgestellt. Die CNP-Mobilität war in Candelillawachs nur nach Behandlung mit Methyloleat höher als in Carnaubawachs. Die Behandlung mit TEHP und AEs führte zu einer höheren CNP-Mobilität in dem polaren, von Alkylestern dominierten Carnaubawachs. Die Verteilungskoeffizienten hingegen waren nach der Behandlung mit Methyloleat sowohl in Candelilla- als auch in Carnaubawachs deutlich niedriger als nach der Behandlung mit TEHP oder AE. Es wurden Modelle für den CNP-Penetrationsmodus unter Berücksichtigung der jeweiligen Adjuvantien in den beiden untersuchten Wachsen entwickelt. Der Grund für die drastischen Unterschiede in der Wirksamkeit der Adjuvantien liegt wahrscheinlich im Ko-Penetrieren von Wasser, dem Hauptbestandteil der auf dem Feld angewandten Spritzformulierungen. Insbesondere die untersuchten AEs begünstigten eine enorme Wasseraufnahme in beiden Wachsen mit zunehmendem Ethoxylierungsgrad. Überraschenderweise wurde dieser Effekt auch für das lipophile TEHP in beiden Wachsen gefunden. Dies führte zu der Vermutung, dass die AI-Permeabilität nicht ausschließlich durch die adjuvansinduzierte Plastifizierung bestimmt wird, sondern auch von einer "sekundären Plastifizierung" abhängt, die durch die Ko-Penetration von Wasser induziert wird und so zur Quellung und drastischen Destabilisierung der kristallinen Wachsstruktur führt. Die erfolgreiche Etablierung der vorgestellten ATR-FTIR-Methode stellt einen Meilenstein für die Untersuchung der Diffusionskinetik von Adjuvantien und AIs in kutikulären Wachsen dar. Insbesondere die gleichzeitig nachweisbare Wachsmodifikation und darüber hinaus die bestimmbare Wasseraufnahme bilden eine perfekte Grundlage, um das ATR-FTIR-System als universelles Screening-Tool für Wachs-Adjuvans-AI-Wasser-Interaktionen in der Pflanzenschutzwissenschaft zu etablieren.
153

Of plants and women

Vierke, Clarissa 14 August 2012 (has links) (PDF)
In contrast to the \'classical Islamic tendi\' where the action as well as the setting is commonly detached from the environmental context of the Swahili coast, the Liyongo poems show an abundance of detailed descriptions and enumerative reviews of material items crucial and characteristic of the particular East African shares of Swahili culture. Frequently reference is also made to the natural environment as plants and their fruits play a prominent role as requisits of both the Swahili natural and cultural setting. Apart from being exploited as central requisite and being referred to as material source in the poems, plants are also extensively used for similes. The Liyongo poems are full of culturally metaphors which are context-dependent and sometimes render the text rather obscure. Without denying that there is, of course, also contemporary poetry employing plants as subject matter or metaphors, in this article I focus on two thematically close poems which we vaguely have to classify as \"old\" while not being able to give exact dates. Although the article suggests to be a thematic view on Swahili poetry, it is primarily a text edition of two poems, the \"Song of the Mjemje\" and the \"Shairi la Mtambuu\", which are both presented together with a critical apparatus.
154

Local plant knowledge for livelihoods an ethnobotanical survey in the Garhwal Himalaya, Uttarakhand, India

Georgiadis, Pavlos January 2008 (has links)
Zugl.: Hohenheim, Univ., Diss.
155

Vegetationsentwicklung auf Skipistenplanierungen in der alpinen Stufe bei Davos = Development of vegetation on levelled ski runs in the alpine zone near Davos /

Meisterhans, Edwin. Meisterhans, Edwin. January 1988 (has links)
Diss. Nr. 8462 Naturwiss. ETH Zürich. / siehe auch: Vegetationsentwicklung auf Skipistenplanierungen in der alpinen Stufe bei Davos. Bibliogr.: p. 144-150.
156

Cuticular Wax Biosynthesis of Lycopersicon esculentum and Its Impact on Transpiration Barrier Properties during Fruit Development / Untersuchungen zur kutikulären Wachsbiosynthese und deren Bedeutung als Transpirationsbarriere während der Fruchtentwicklung von Lycopersicon esculentum

Leide, Jana January 2008 (has links) (PDF)
Cuticular waxes cover all above-ground growing parts of plants. They provide the outermost contact zone between plants and their environment and play a pivotal role in limiting transpirational water loss across the plant surface. The complex mechanisms in cuticular wax biosynthesis conferring proper barrier function still remain to be elucidated. The present study focuses on biosynthetic pathways in wax formation, cuticular wax accumulation and composition and its impact on the epidermal barrier property of the intact system of the astomatous tomato fruit (Lycopersicon esculentum Mill.). Fruits of all developmental stages of the wild type cultivar MicroTom and its lecer6 mutant defective in a β-ketoacyl-CoA synthase involved in very-long-chain fatty acid elongation were analyzed. This 'reverse genetic' approach clarified the importance of the β-ketoacyl-CoA synthase LeCER6 for epidermal barrier property in vivo on the biochemical-analytical level, on the transcriptional level and, furthermore, on the physiological level comparatively between MicroTom wild type and MicroTom lecer6. Surfaces of MicroTom wild type and MicroTom lecer6 fruits showed similar patterns of quantitative wax accumulation, but differed considerably in the permeance for water. Qualitative analyses of the chemical composition of fruit cuticular waxes in the course of fruit development revealed the meaning of the β-ketoacyl-CoA synthase deficiency in the lecer6 mutant. Fruits of this mutant exhibited a distinct decrease in the proportion of n-alkanes of chain lengths > C28. Moreover, a concomitant increase in pentacyclic triterpenoids became discernible in the mature green fruit stage of the mutant. Since quantitative changes of the cutin matrix were not sufficient to affect transpiration barrier properties of the lecer6 mutant presumably the shift in cuticular wax biosynthesis of the lecer6 mutant is responsible for the observed increase of water permeance. In order to investigate the molecular basis of wax formation, a microarray experiment was established that allows the simultaneous and comprehensive analysis of the timing and abundance of transcriptional changes in MicroTom wild type and MicroTom lecer6. This microarray consists of 167 oligonucleotides corresponding to EST and gene sequences of tomato potentially participating in wax biosynthesis, wax modification, transport processes and stress responsiveness. These parameters were correlated with the course of fruit development. This comparison of gene expression patterns showed a variety of differential expressed transcripts encoding for example lipid transfer proteins and the dehydrin TAS14. On the basis of these findings, it can be proposed that diverse regulatory mechanisms like lipid transfer processes or osmotic stress response are affected by the LeCER6 deficiency, which is primarily accompanied by an impaired water barrier property of the fruit cuticle. This present study correlates the continuous increase of LeCer6 gene expression and the accumulation of very-long-chain n-alkanes within the cuticular waxes during the transition from the immature green to the early breaker fruit phase displaying a developmental regulation of the cuticular wax biosynthesis. Organ-specific wax biosynthesis resulted in different cuticular wax pattern in tomato fruits and leaves. Moreover, in contrast to the fruits, LeCER6-deficient leaves showed a significantly reduced wax accumulation, mainly due to a decrease of n-alkanes with chain lengths > C30, while the proportion of pentacyclic triterpenoids were not affected. Deduced from these biochemical-analytical data on tomato fruits and leaves LeCER6 was characterized as a key enzyme in VLCFA biosynthetic pathway responsible for cuticular wax accumulation. In silico analysis of the LeCER6 sequence revealed the presence of two putative transmembrane domains in the N-terminal position. In addition, highly conserved configurations of catalytic residues in the active site of the enzyme were observed, which are probably essential to its overall structure and function in the fatty acid elongation process. High sequence homology of LeCER6 to the very-long-chain condensing enzymes GhCER6 of Gossypium hirsutum L. and AtCER6 of Arabidopsis thaliana (L.) Heynh. was found, which might be a good evidence for similar biochemical functions. Apart from developmental regulation of the cuticular wax biosynthesis, environmental factors influenced the cuticular wax coverage of tomato fruits. Mechanical removal of epicuticular fruit wax evoked large-scale modifications of the quantitative and qualitative wax composition, such as a reduction of aliphatic wax components, and therewith affected the cuticular water permeability. A subsequent regeneration event was included in the regular wax biosynthesis process and led to the compensation of the detached wax amounts and increased the water barrier properties of the cuticular membrane again. In contrast, water-limited conditions had only minor impact on alterations in cuticular wax biosynthesis and, consequently, on the permeance for water of tomato fruits. Floral organ fusion and conditional sterility, as observed in this study, are caused as pleiotropic effects in cell-cell signaling by the loss-of-function mutation in LeCER6. These findings corroborated the functional impact of LeCER6 on the epidermal integrity and are consistent with the current knowledge on eceriferum mutants of Arabidopsis. Investigations of phenotypic and biochemical characteristics of tomato fruits allowed a broader system-orientated perspective of the fruit development of MicroTom wild type and its lecer6 mutant. These analyses highlight more precisely alterations in the fruit surface area, fresh and dry weight, epidermal cell density, photosynthetic activity or glucose content in the course of fruit development. The differences between MicroTom wild type and MicroTom lecer6 characterize very well the large-scale consequences of the LeCER6 deficiency on the physiological status of tomato fruits. Moreover, the results clearly show a part of the genetic controlled network that governs tomato fruit metabolism and mediates extensive changes of the tomato fruit life cycle. The analyses of the stem scar tissue of the tomato fruit revealed a complex set of responses caused by the harvesting process in detail. Throughout storage of the tomato fruits barrier properties were attributed to the suberized stem scar tissue in regard to water loss limitation and reduction of the fungal infection rate. Thereby the endogenous level of abscisic acid was found to be involved in the molecular signaling pathway that regulates the de novo formation of this tissue. For the first time, the chemical composition and physiological importance could be correlated with molecular changes at the transcriptional level during suberization of the stem scar of tomato fruits. In conclusion, this work indicates a novel intact model system for an integrative functional approach for plant barrier properties that was successfully established and carefully studied. The results highlight correlations between wax biosynthesis, distribution of cuticular waxes, and its relevance on the transpirational water loss across the plant surface and, thus, promote the global understanding of plant cuticle biology. / Kutikuläre Wachse bedecken alle oberirdischen Pflanzenteile und stellen somit die Kontaktzone zwischen Pflanzen und ihrer Umwelt dar. Zudem spielen sie eine entscheidende Rolle für den Schutz der Pflanzen vor unkontrolliertem Wasserverlust. Die komplexen Mechanismen der Wachsbiosynthese, die zur dieser Barrierefunktion beitragen, sind jedoch noch weitgehend unaufgeklärt. Die vorliegende Arbeit untersucht Biosynthesewege von kutikulären Wachsen, ihre chemische Beschaffenheit sowie deren funktionelle Bedeutung als Transpirationsbarriere an dem intakten System der astomatären Tomatenfrucht (Lycopersicon esculentum Mill.). Untersuchungen wurden dabei an Früchten unterschiedlicher Entwicklungsstadien des Tomatenkultivars MicroTom Wildtyp und dessen lecer6 Mutante durchgeführt. Die lecer6 Mutante ist durch einen genetisch determinierten Defekt in der β-Ketoacyl-CoA Synthase LeCER6 unfähig zur Verlängerung von sehr langkettigen Fettsäuren. Durch diesen 'reverse genetic' Ansatz wurde der Einfluss der β-Ketoacyl-CoA Synthase LeCER6 auf die Barrierefunktion der Epidermis zunächst in vivo auf der biochemisch-analytischen und physiologischen Ebene vergleichend zwischen MicroTom Wildtyp und MicroTom lecer6 analysiert. Daran schlossen sich Untersuchungen auf transkriptioneller Ebene an. Die den Früchten von MicroTom Wildtyp und der lecer6 Mutante aufgelagerten Wachse unterscheiden sich quantitativ nur wenig, weisen hingegen deutliche Unterschiede in der qualitativen Zusammensetzung und den Wasserleitwerten auf. Die Analyse der chemischen Zusammensetzung der kutikulären Wachse zeigte im Verlauf der Fruchtentwicklung, dass die Defizienz in der β-Ketoacyl-CoA Synthase LeCER6 eine Abnahme des n-Alkananteils in den Wachsen ab einer Kettenlängen > C28 bewirkt, was bereits im Stadium der reifen grünen Früchte zu erkennen ist. Die in der lecer6 Mutante vermehrt eingelagerten pentazyklischen Triterpenoide können die Transpirationsbarriereeigenschaft der aliphatischen n-Alkane nicht adäquat ersetzen. Ein möglicher Einfluss der ebenso untersuchten Kutinmatrix der Tomatenfrucht konnte ausgeschlossen werden. Für eine umfangreiche Genexpressionsanalyse von MicroTom Wildtyp und MicroTom lecer6 wurde ein microarray Experiment konzipiert, welches 167 Oligonukleotide umfasst entsprechend zu bekannten EST- und Gensequenzen der Tomate, die möglicherweise an der Wachsbiosynthese, Wachsmodifikation, relevanten Transportprozessen oder Stressreaktionen beteiligt sind. Der Vergleich der Genexpression zwischen Wildtyp und der lecer6 Mutante zeigte eine Vielzahl von differentiell expremierten Transkripten unter anderem Lipidtransferproteine und das Dehydrin TAS14. Anhand derer kann davon ausgegangen werden, dass der Verlust der LeCER6 Funktion unterschiedliche regulative Mechanismen beeinflusst, wie zum Beispiel Lipidtransportprozesse und Reaktionen des osmotischen Stresses, die mit einer Schwächung der kutikulären Transpirationsbarriere der Fruchtepidermis einhergehen. Die vorliegende Studie belegt zudem erstmals einen Zusammenhang zwischen der Steigerung der LeCer6 Genexpression, der nur geringfügig zeitverzögerten Anreicherung sehr langkettiger n-Alkane in den kutikulären Wachsen und der daraus resultierenden Barriereleistungsfähigkeit. Ebenso wird eine Regulation der kutikulären Wachsbiosynthese in Abhängigkeit von den jeweiligen Stadien der Fruchtentwicklung veranschaulicht. Der organspezifische Vergleich der kutikulären Wachsbiosynthese zeigte, dass sich die Wachsmuster von Früchten und Blättern der Tomatenpflanzen deutlich voneinander unterscheiden. Die Wachsakkumulation auf der Blätterepidermis ist durch die LeCER6-Defizienz hauptsächlich im Anteil sehr langkettiger n-Alkane > C30 signifikant herabgesenkt, während der Gehalt an pentazyklischen Triterpenoiden jedoch nicht, so wie in den Früchten der lecer6 Mutante beobachtet, ansteigt. Aufgrund dieser Untersuchungen der Tomatenfrüchte und -blätter konnte LeCER6 als ein Schlüsselenzym für die Verlängerung sehr langkettiger Fettsäurederivate innerhalb der kutikulären Wachsbiosynthese funktionell charakterisiert werden. Anhand von vergleichenden in silico Sequenzanalysen mit den Fettsäurenelongasen GhCER6 aus Gossypium hirsutum L. und AtCER6 aus Arabidopsis thaliana (L.) Heynh. konnten sowohl zwei mögliche transmembrane Proteindomänen im N-terminalen Bereich als auch hochkonservierte Bereiche im katalytischen Zentrum des LeCER6-Enzyms lokalisiert werden, die vermutlich zur funktionellen Struktur des Enzyms beitragen. Neben der bereits angeführten entwicklungsabhängigen Regulation der Wachsbiosynthese beeinflussen auch Umweltstressoren die kutikuläre Wachsauflage der Tomatenfrüchte. Ein mechanisches Entfernen der epikutikulären Wachse führt zu einer beträchtlichen Reduktion der aliphatischen Wachsbestandteile, welche maßgeblich die Barriereeigenschaft der Kutikulamembran bestimmen. Die einsetzende Regeneration der manipulierten Wachsoberfläche führt zu einer vollständigen Kompensation der entfernten Wachskomponenten, so dass die Tomatenfrüchte in nur kurzer Zeit wieder eine dem Reifestadium entsprechende normale Verteilung der kutikulären Wachse aufweisen. Im Gegensatz dazu führt Wassermangel nur zu sehr geringfügigen qualitativen und quantitativen Veränderungen der kutikulären Wachsschicht und folglich des Wasserleitwertes der Tomatenfrüchte. Die hier dokumentierte Organfusion der Blüte und die eingeschränkte Sterilität der Tomatenpflanzen wurden als pleiotrope Effekte der lecer6 Mutation auf die Zell-Zell-Kommunikation charakterisiert, was der funktionellen Bedeutung von LeCER6 für die Epidermisintegrität entspricht und mit Beobachtungen an eceriferum Mutanten in Arabidopsis übereinstimmt. Die kombinierte Untersuchung phänotypischer und biochemischer Merkmale der Tomatenfrucht erlaubt eine breitere, systemorientierte Gegenüberstellung der Fruchtentwicklung von MicroTom Wildtyp und MicroTom lecer6. Dabei werden durch die Analysen von Größe, Frisch- und Trockengewicht, Dichte der Epidermiszellen, Photosyntheseaktivität und Glukosegehalt der Früchte die Unterschiede zwischen MicroTom Wildtyp und der lecer6 Mutante deutlich aufgezeigt. Die LeCER6-Defizienz der Mutante führt dabei zu weitreichenden Veränderungen im physiologischen Status der Frucht. Diese Ergebnisse spiegeln somit einen Teil des physiologischen Netzwerkes wider, welches weitreichende sekundäre Veränderungen im Lebenszyklus der Tomatenfrucht vermittelt. Das Stielnarbengewebe der Tomatenfrucht wird infolge der Verletzung durch den Ernteprozess gebildet. Basierend auf der de novo Suberinbiosynthese kann diesem Gewebe eine wichtige Barrierefunktion sowohl zur Einschränkung des unkontrollierten Wasserverlustes als auch zur Verringerung der Infektionsrate durch einen pilzlichen Erreger während der Lagerung von Tomatenfrüchten beigemessen werden. Eine Beteiligung der endogenen Abscisinsäure an dem der Bildung des suberinisierten Gewebes der Fruchtstielnarbe zugrunde liegendem, molekularen Signalweg konnte nachgewiesen werden. Zusammenfassend dokumentiert diese Arbeit erstmalig detaillierte Studien im Hinblick auf pflanzliche Barriereeigenschaften an einem intakten Modellsystem. Die präsentierten Ergebnisse zu molekularen Untersuchungen der Wachsbiosynthese und qualitative and quantitative Analysen der Wachsakkumulation werden im Zusammenhang des Schutzes der Pflanzenoberfläche gegen Wasserverlust durch Transpiration diskutiert und bieten somit neue Erkenntnisse über die pflanzliche Kutikula.
157

The influence of ultraviolet radiation on plant-insect interactions / Der Einfluss von ultravioletter Strahlung auf Pflanzen-Insekten Interaktionen

Kuhlmann, Franziska January 2009 (has links) (PDF)
Plants must respond to multiple stimuli in a natural environment. Therefore they need the ability to rapidly reorganise and specifically build up appropriate metabolites to adapt to their environment. Abiotic cues, such as ambient solar radiation, influence the next trophic level directly, but also an altered plant composition triggered by these environmental cues can have an effect on the behaviour of herbivores. The aim of this study was to test effects of the important ultraviolet (UV) radiation on plants and on plant-insect interactions using multi-level investigations. The focus was on the conduction of controlled experiments with broccoli plants in highly engineered greenhouses covered with innovative materials, which only differed in their UV-B transmission. For the first time in this controlled environment the plant-mediated UV-B effects on phloem-feeding aphids were studied. Broccoli plants (Brassica oleracea L. convar. botrytis, Brassicaceae) were under filter tents either exposed to (inclusion, +UV) or not exposed to (exclusion, -UV) UV-A / UV-B radiation. In greenhouses covered with new, innovative materials transmitting high (80%), medium (23%) or low (4%) levels of ambient solar UV-B radiation, in particular the influence of UV-B radiation on broccoli was examined. Plants respond highly specific to environmental stimuli such as UV-B radiation and herbivory. UV-B radiation has a strong impact on the plants’ architecture and flavonoid contents, which can in turn influence plant-insect interactions. Phloem-feeding aphids can be negatively affected by UV-B mediated plant changes. However, a direct effect of UV radiation on the behaviour of herbivores is also evident. Mainly the number, composition and quality of herbivorous species as well as an exceeding of a certain infestation threshold determine the mode of plant changes. In conclusion, UV-B radiation has the potential to harden plants against herbivores and simultaneously increases the concentrations of valuable secondary metabolites for human nutrition in important crop species such as broccoli. / In ihrer natürlichen Umgebung sind Pflanzen verschiedensten und vor allem wechselnden Umwelteinflüssen ausgesetzt, auf die sie schnell und angemessen reagieren müssen. Das Insektenverhalten der nächsten trophischen Ebene wird direkt durch abiotische Umweltfaktoren, wie zum Beispiel Sonnenstrahlung, sowie durch daraus resultierende Veränderungen in Pflanzen gesteuert. Das Ziel dieser Untersuchung war es, herauszufinden, wie sich ultraviolette (UV) Strahlung auf Pflanzen und Pflanzen-Insekten Interaktionen auswirken kann. Dies wurde auf verschiedensten Ebenen untersucht. Mit Hilfe von speziell angefertigten Gewächshäusern konnten Brokkolipflanzen unter kontrollierten UV-B Bedingungen angezogen werden. Der Einfluss von UV-B Strahlung auf Brokkoli und von UV-B induzierten Effekten in Brokkoli auf phloem-fressende Blattläuse wurde erstmals untersucht. Die Experimente wurden mit Brokkolipflanzen (Brassica oleracea L. convar. botrytis, Brassicaceae) durchgeführt, die in Folienzelten mit unterschiedlicher UV-Strahlungsdurchlässigkeit exponiert wurden. Die Eindeckungen der Folienzelte waren entweder UV-A / UV-B durchlässig (+UV) oder undurchlässig (-UV). Gewächshäuser mit innovativen Eindeckungsmaterialien, die speziell UV-B in hohen (80%), mittleren (23%) oder geringen (4%) Mengen transmittierten, wurden genutzt, um den alleinigen Effekt von UV-B Strahlung auf Pflanzen hervorzuheben. Pflanzen reagieren auf verschiedene Umweltreize wie zum Beispiel UV-B Strahlung und Herbivorie sehr zielgerichtet. UV-B Strahlung hat einen starken Einfluss auf das Pflanzenwachstum und die Flavonoidgehalte, was wiederum Pflanzen-Insekten Interaktionen artspezifisch steuern kann. Phloem-fressende Herbivoren können durch UV-B-induzierte Pflanzenveränderungen negativ beeinflusst werden. Ein direkter UV-Effekt auf das Verhalten von Herbivoren ist jedoch ebenfalls erwiesen. Sowohl die Anzahl, Zusammensetzung und Qualität von Herbivorenarten also auch das Überschreiten einer definierten Befallsschwelle bestimmen das Ausmaß der Pflanzenveränderungen. Zusammenfassend ist zu sagen, dass UV-B Strahlung Pflanzen gegenüber Fraßfeinden abhärten und gleichzeitig die Konzentration wertvoller pflanzlicher Inhaltsstoffe für die menschliche Ernährung in Feldfrüchten erhöhen kann.
158

Mechanismus des pre-tRNA-Spleißens : Struktur und Funktion pflanzlicher und animaler RNA-Ligasen / Mechanism of tRNA splicing: structure and function of plant and animal RNA ligases

Englert, Markus January 2005 (has links) (PDF)
Transfer Ribonukleinsäuren werden von der RNA Polymerase III als Vorläufer tRNA transkribiert und durchlaufen eine Vielzahl von Reifungsschritten hin zur maturen tRNA. Neben der Hydrolyse der 5´- und 3´-Flanke durch die RNase P und die tRNase Z, sowie einer Vielzahl von Basenmodifizierungen, wird bei einigen pre-tRNAs das Intron herausgespleißt. Die ersten intronhaltigen tRNA Gene wurden in der Hefe Saccharomyces cerevisiae nachgewiesen und folglich wurde der Spleißmechanismus in diesem Organismus als erstes untersucht. Eine tetramere tRNA Spleißendonuklease spaltet das Intron an den Exongrenzen heraus und eine tRNA Ligase ligiert die entstandenen tRNA Hälften zur gespleißten tRNA. Einzig in der Hefe und anderen Pilzen konnten bisher die Gene für die tRNA Ligase identifiziert werden. Weder molekularbiologische Ansätze – wie z.B. DNA Hybridisierung, Expressions-“Screening“ und funktionelle Komplementationsstudien mit einem tRNA Ligase-defizienten Hefestamm – noch Datenbanksuchen mit der bekannten Hefe tRNA Ligasesequenz haben in den vergangenen Jahren zur Identifizierung eines pflanzlichen oder animalen tRNA Ligase Gens geführt. In dieser Arbeit ist es erstmals gelungen, das tRNA Ligase Protein aus Weizenkeimen bis zur Homogenität zu isolieren und mit Hilfe erhaltener Peptidsequenzen die entsprechenden Kern-codierten Gene in höheren und niederer Pflanzen zu identifizieren. Die Ligaseaktivität wurde für das klonierte, rekombinant überexprimierte tRNA Ligaseprotein bestätigt. Weiterhin wurde zum ersten Mal das Ligaseprotein aus Schweineleber aufgereinigt und das zugehörige Gen im humanen Genom identifiziert. / Transfer ribonucleic acids (tRNAs) are produced by RNA polymerase III and undergo multiple maturation steps until to the mature tRNA. Besides the endonucleolytic removal of 5´- and 3´-flanks by RNase P and tRNase Z and a multitude of base modifications, the introns of some pre-tRNA is spliced out. The first intron-containing tRNA genes have been identified in Saccharomyces cerevisae and consequently the splicing mechanism has been studied in this organism first. A tetrameric splicing endonuclease cleaves the intron at the exon borders and a tRNA ligase ligates the resulting tRNA halves to the spliced tRNA. The gene for this tRNA ligase has up to now only been identified in yeast and in other fungi. Neither molecular biological approaches – as, e.g., DNA hybridisation, expression screening and functional complementation studies with a tRNA ligase-deficient yeast strain – nor data bank searches with the known yeast tRNA ligase sequence have led to the identification of a plant or animal tRNA ligase gene. In this work a purification to homogeneity has been achieved for the wheat germ tRNA ligase protein for the first time, followed by the identification of the corresponding nuclear-encoded genes in higher and lower plants with the help of resulting peptide sequences. The ligase activity was confirmed for the cloned, recombinant overexpressed tRNA ligase protein. Moreover, the ligase protein from pig liver was purified and the corresponding gene identified in the human genome.
159

Chemical and functional analyses of the plant cuticle as leaf transpiration barrier / Chemie-Funktionsanalysen der pflanzlichen Kutikula als Transpirationsbarriere

Schuster, Ann-Christin January 2016 (has links) (PDF)
Cuticles cover all above-ground primary plant organs and are lipoid in nature consisting of a cutin matrix with cuticular waxes embedded within or deposited on its surface. The foremost function of the plant cuticle is the limitation of transpirational water loss into the surrounding atmosphere. Transpiration of water vapour from plants differs between stomatal and cuticular transpiration. Stomatal closure minimises the stomatal water loss and the remaining, much lower water transpiration occurs through the plant cuticle. Temperature influence on the transpiration barrier properties of intact leaves is not yet known, despite the importance of the cuticular transpiration especially under drought and heat conditions. The present study focuses on the temperature-dependent minimum water permeability of whole leaves, in comparison to the temperature effect on the cuticular permeance of isolated, astomatous cuticles (Chapter I - III). The minimum water permeability was determined gravimetrically from leaf drying curves and represents the cuticular water permeability of intact, stomatous leaves under conditions of complete stomatal closure. The temperature effect on the transpiration barrier of the desert plant Rhazya stricta and the Mediterranean sclerophyll Nerium oleander exposed a continuous increase of minimum water permeabilities with an increase in temperature. In contrast to other published studies, no abrupt and steep increase of the water permeability at high temperatures was detected. This steep increase indicates structural changes of the barrier properties of isolated cuticular membranes with a drastic decrease of efficiency. A stabilising impact of the cell wall on the plant cuticle of intact leaves was proposed. This steadying effect was confirmed with different experimental approaches measuring the cuticular water permeability of Prunus laurocerasus intact leaves. Physiological analysis of water transport on isolated, astomatous leaf cuticles indicated a drastic decline of the barrier properties at elevated temperatures for Prunus laurocerasus but not for Nerium oleander. Cuticular components were quantitatively and qualitatively analysed by gas chromatography with a flame ionisation detector and a mass spectrometric detector, respectively. A high accumulation of pentacyclic triterpenoids as cuticular wax components in relation to the cutin monomer coverage was detected for Nerium oleander and for Rhazya stricta leaves, too. Accordingly, reinforcing of the cutin matrix by triterpenoids was proposed to improve the mechanical strength and to reduce the extensibility of plant cuticles. Thus, structural changes of the cuticular barrier properties were potentially suppressed at elevated temperatures. The function of the cuticular wax amount and/or wax composition and its relation with the cuticular water permeability remains to be elucidated. In the second part of this work the cuticular wax quantity and quality as well as its impact on the transpiration barrier properties was analysed in order to deduce a potential relation between chemistry and function of plant cuticles (Chapter IV - V). Chemical analyses of the cuticular wax components of a wide range of plant species, including one tropical (Vanilla planifolia), temperate (Juglans regia, Plantago lanceolata), Mediterranean (Nerium oleander, Olea europaea) and one desert (Rhazya stricta) plant species, were conducted. The cuticular wax compositions of nine characteristic plant species from xeric limestone sites naturally located in Franconia (Southern Germany) were determined for the first time. The corresponding minimum or cuticular water permeabilities of both stomatous and astomatous leaf surfaces were measured to detect a potential relationship between the cuticular wax amount, wax composition and the cuticular barrier properties. It was demonstrated that abundant cuticular wax amounts did not constitute more efficient transpiration barriers. However, 55% of the cuticular barrier function can be attributed to the very-long-chain aliphatic wax coverages. These new findings provide evidence that the acyclic wax constituents play a pivotal role establishing efficient transpiration barriers. Additionally, these findings strengthen the hypothesis that cyclic components, such as pentacyclic triterpenoids, do not hinder the water diffusion through plant cuticles as effectively as acyclic constituents. For the first time a relationship between the cuticular wax composition and the transpiration barrier properties of a wide range of plant species proved insights into the potential relation between chemistry and function of plant cuticles. / Die Kutikula bedeckt die Epidermis aller primären oberirdischen Pflanzenorgane. Diese lipophile Membran besteht aus dem Polymer Kutin und ein- bzw. aufgelagerten kutikulären Wachsen. Die wichtigste Aufgabe der Kutikula ist der Schutz der Pflanze vor Austrocknung, indem der unkontrollierte Wasserverlust in die Atmosphäre reduziert wird. Spaltöffnungen unterbrechen die kontinuierliche Schutzschicht, wobei die stomatäre Transpiration durch Spaltenschluss minimiert wird und die verbleibende, stark reduzierte Transpiration ausschließlich durch die pflanzliche Kutikula erfolgt. Der Temperatureinfluss auf die Transportbarriere intakter Blätter ist bislang unerforscht, obwohl die kutikuläre Transpiration vor allem an trockenen und heißen Standorten eine wichtige Rolle spielt. Im Rahmen dieser Dissertation wurde die temperaturabhängige kutikuläre Wasserpermeabilität ganzer Blätter und isolierter Kutikularmembranen verglichen (Kapitel I - III). Die minimale Wasserpermeabilität wurde gravimetrisch mittels Blattaustrocknungskurven bestimmt. Sie ist ein Maß für die kutikuläre Wasserdurchlässigkeit intakter, stomatärer Blätter bei geschlossenen Spaltöffnungen. Die minimale Wasserpermeabilität intakter Blätter von Rhazya stricta und Nerium oleander zeigte einen kontinuierlichen Anstieg mit zunehmender Temperatur. Im Gegensatz zu anderen Veröffentlichungen wurde kein abrupter, steiler Anstieg der Wasserpermeabilität bei erhöhten Temperaturen detektiert, welcher auf strukturelle Veränderungen der Transpirationsbarriere isolierter Kutikularmembranen und auf eine damit einhergehende, stark verminderte Effizienz hindeutet. Dies kann auf einen stabilisierenden Einfluss der Zellwand auf die pflanzliche Kutikula zurückgeführt werden. Verschiedene experimentelle Ansätze zur Bestimmung der temperaturabhängigen kutikulären Wasserpermeabilität von Prunus laurocerasus Blättern konnten dies bestätigen. Bei erhöhten Temperaturen wiesen die isolierten, astomatären Kutikularmembranen von Prunus laurocerasus Blättern eine starke Abnahme der Barrierefunktion auf, die isolierten Kutikularmembranen von Nerium oleander Blättern jedoch nicht. Die kutikulären Wachs- und Kutinkomponenten wurden quantitativ mittels Gaschromtograph mit Flammenionisationsdetektor und qualitativ mittels Gaschromatograph gekoppelt mit Massenspektrometer analysiert. Ein sehr hoher Gehalt an pentazyklischen Triterpenoiden im kutikulären Wachs in Bezug auf den Kutingehalt wurde sowohl für die Blätter von Nerium oleander als auch für Rhazya stricta bestimmt. Triterpenoide erhöhen möglicherweise die mechanische Festigkeit und reduzieren die Dehnbarkeit der Kutikula, indem sie die Kutinmatrix verstärken. Hierdurch könnten strukturelle Veränderungen der Transpirationsbarriere bei erhöhten Temperaturen herabgesetzt werden. Die weit verbreitete Ansicht, dass die Wasserpermeabilität von der kutikulären Wachsmenge und/oder der Wachszusammensetzung bestimmt wird, konnte bislang nicht bestätigt werden. Im zweiten Teil der vorliegenden Arbeit wurden chemisch-analytische Methoden angewandt, um den Einfluss der Wachskomponenten auf die Transpirationsbarriere zu ermitteln, und somit einen potentiellen Zusammenhang zwischen der Chemie und der Funktion der pflanzlichen Kutikula abzuleiten (Kapitel IV - V). Um Hinweise auf die Auswirkung der chemischen Zusammensetzung der Kutikula auf die Transpirationsbarriere zu erhalten, wurden die kutikulären Wachse eines breiten Artenspektrums analysiert, darunter eine tropische Pflanzenart (Vanilla planifolia), mediterrane Arten (Nerium oleander, Olea europaea), Pflanzenarten der gemäßigten Zone (Juglans regia, Plantago lanceolata) und eine Wüstenpflanze (Rhazya stricta). Zusätzlich wurde die kutikuläre Wachszusammensetzung von neun charakteristischen Pflanzenarten des Mainfränkischen Trockenrasens erstmals untersucht. Die entsprechende minimale oder kutikuläre Wasserpermeabilität von stomatären und astomatären Blattoberflächen dieser Pflanzenarten wurde bestimmt, um einen möglichen Zusammenhang zwischen der Wachschemie mit der Barrierefunktion aufzuklären. Es konnte gezeigt werden, dass hohe Wachsmengen keine effizienteren Transpirationsbarrieren bilden. Jedoch konnten rund 55% der Barrierefunktion dem Anteil an langkettigen aliphatischen Komponenten zugeordnet werden. Diese neuen Erkenntnisse erbringen den Nachweis, dass die kutikuläre Transpirationsbarriere entscheidend von azyklischen Wachskomponenten beeinflusst wird. Zudem konnte bestätigt werden, dass zyklische Wachskomponenten die Wasserpermeabilität weniger stark beeinflussen als azyklische Bestandteile. Diese Ergebnisse zeigen zum ersten Mal einen Zusammenhang zwischen der chemischen Zusammensetzung der kutikulären Wachse und der kutikulären Transportbarriere anhand eines breiten Artenspektrums.
160

Raman-spektroskopische Untersuchungen an Pflanzen und Mikroorganismen / Raman spectroscopic investigations on plants and microorganisms

Rösch, Petra January 2002 (has links) (PDF)
In dieser Arbeit werden Pflanzen, Pflanzengewebe, Pflanzenzellen und Mikro-organismen spektroskopisch untersucht und ihre Inhaltsstoffe unter minimaler Probenpräparation im biologischen Gewebe direkt lokalisiert und identifiziert. Unter den verfügbaren Schwingungs-spektroskopischen Methoden ist die Mikro-Raman-Spektroskopie für diese Fragestellungen besonders gut geeignet, da Wasser Raman-Spektren nur wenig beeinflusst. Daher kann mit Raman-spektroskopischen Methoden auch in stark wasserhaltigem Gewebe gemessen werden. Weiterhin erhält man mit der Mikro-Raman-Spektroskopie eine gute räumliche Auflösung im sub-µm-Bereich, wodurch es möglich ist, heterogene Proben zu untersuchen. Darüber hinaus kann die Mikro-Raman-Spektroskopie mit anderen Methoden, wie z. B. der oberflächenverstärkten Raman-Spektroskopie (SERS), kombiniert werden. In pflanzlichen Zellen liegt eine Vielzahl von Substanzen in geringen Konzentrationen vor. Aufgrund der niedrigen Quantenausbeute des Raman-Effekts treten vor allem Substanzen, die eine Resonanz-Verstärkung erfahren, in den Spektren hervor. Diese Substanzen, wie z. B. b-Carotin, können deshalb in geringen Konzentrationen detektiert werden. Der Schwerpunkt dieser Arbeit liegt in der Untersuchung von Sekundär-Metaboliten wie Alkaloiden, Lipiden oder Terpenen, die in der Pflanze agglomerieren. Neben der Identifikation von Inhaltsstoffen, können die Raman-Spektren von Pflanzen für die chemotaxonomische Klassifizierung mit Hilfe der hierarchischen Clusteranalyse verwendet werden. Die Identifizierung von Mikroorganismen auch in sehr geringen Mengen (Monolage, einzelne Zellen) ist mit der Mikro-Raman-Spektroskopie nur unter bestimmten Voraussetzungen durchführbar. Für weitergehende Untersuchungen wird hier die SERS-Sonde oder ein TERS-Aufbau verwendet werden. / This thesis concentrates on the spectroscopic investigation of plants, plant tissue, plant cells as well as microorganisms. The characteristic components of the biological cells have been localized and identified directly in the biological tissue with minimal sample preparation only. Among the different vibrational spectroscopic methods micro Raman spectroscopy appears to be the most suitable technique for such scientific investigations. For example, water which shows sharp absorptions in the infrared is only a weak Raman scatterer. Thus biological tissues containing a high amount of water can be easily studied with Raman spectroscopy. Due to the use of laser light for the excitation of Raman scattering sub-µm spatial resolution can be realized by micro Raman spectroscopy. This allows the investigation of very heterogeneous samples. Furthermore, micro Raman spectroscopy can be combined with other methods such as surface enhanced Raman spectroscopy (SERS). Plant cells consist of a great variety of substances at low concentrations. As the Raman effect has a poor quantum yield mostly resonance enhanced substances can be identified in the resulting spectra. These substances like e. g. b-carotene can be detected down to very low concentrations. The main focus lies on the investigation of secondary metabolites such as alkaloids, lipids or terpenes, which agglomerate in the plant. Besides the identification of plant components, Raman spectra allow the chemotaxonomic classification of plants when combined with a hierarchical cluster analysis. The identification of microorganisms in low amounts (monolayers, single cells) could only be achieved with Raman spectroscopy when certain conditions are met. Further investigations should focus on the SERS probe or the TERS setup.

Page generated in 0.0617 seconds