• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

IDENTIFICATION OF HUMAN PGC-1α-b ISOFORMS USING A NOVEL PGC-1α-b SPECIFIC ANTIBODY

Hedrick, Shannon 22 November 2013 (has links)
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is known as the master regulator of mitochondrial biogenesis. PGC-1α holds this role by acting as a transcriptional coactivator for an array of transcription factors and nuclear hormone receptors, such as NRF-1/2 and ERRα/γ, whose downstream targets function in mitochondrial biogenesis and oxidative phosphorylation. PGC-1α is regulated both at the transcriptional and post-translational level in several signaling pathways, including p38 MAPK and AMPK. This regulation affects which transcription factor binding events can occur in a given tissue, and thus affects regulation of PGC-1α target genes. PGC-1α is downregulated in many neurodegenerative disorders as well as in muscular dystrophies, diabetes, and aging. Therefore, PGC-1α is prized as a potential therapeutic target to create novel treatments for these various diseases.However, details governing the spatio-temporal regulation of PGC-1α are not completely understood, and overexpression of PGC-1α throughout the body or even in certain tissues or subsets of cells have had detrimental effects in animal and cell models. Therefore, it is necessary to gain knowledge of how to modulate PGC-1α in a tissue-specific manner utilizing these different levels of regulation in order to develop novel therapies. In order to further understand all the functions that have been attributed to PGC-1α, the PGC-1α isoforms need to be accounted for and understood in human tissues. Several murine isoforms have been published, as well as several human brain and muscle isoforms. However, most of these isoforms have only been validated as mature transcripts, and it is not known whether they produce functional protein. Our lab has identified the isoform b transcript in human brain tissue via 5’ RACE and have developed an isoform b specific antibody. This project aimed to characterize the isoform b transcripts and also to validate and optimize this antibody for immunoblotting conditions for detection of further PGC-1α-b isoform protein variants in human tissues. Preliminary studies in our lab have shown that in postmortem frontal cortex from age-matched PD and healthy patients, isoform a transcript levels were 10-15 times more abundant than that of isoform b. These differences in regulation could be partially attributed to the isoform b promoter region being heavily methylated, as shown in this thesis through bisulphite cloning and sequencing as well as 454 bisulphite sequence analysis. The high degree of methylation, correlated with the low level of isoform b transcript in brain and it is not known whether this transcript would be translated into protein in this tissue. In order to probe for isoform b protein expression using human cell lines and tissues, however, it was necessary to create a recombinant protein in order to have a positive control with which to optimize our novel antibody. In our previous 5’ RACE studies, an alternatively spliced PGC-1α-b transcript was found which coded for an early stop codon. This truncated isoform was called PGC-1α-b-3T1, and mature transcript was found in both human skeletal muscle and brain. For this project, PGC-1a-b-3T1 was cloned from human skeletal muscle into a bacterial expression vector to create a recombinant GST fusion protein. This protein was used to validate and optimize our PGC-1α-b specific antibody as well as to determine sensitivity and specificity. The purified recombinant protein contained 3 bands of lower molecular weight that were detected via western blot with both GST and the PGC-1α-b specific antibody. These bands were trypsin cleaved and subjected to mass spectrometry analysis, which verified that all bands detected by the PGC-1a-b specific antibody contained the epitope sequence, and thus binding was specific. This protein was then used to determine western blotting conditions and sensitivity, which is 10 ng using a 1:100 dilution of the antibody. This antibody was then used to probe SH-SY5Y WCL, a human neuroblastoma cell line. Peptide competition assay confirmed 5 PGC-1α-b specific proteins in these lysates. The sizes of these proteins matched to several murine PGC-1α-b isoforms as well as putative PGC-1α-b versions of PGC-1a-a isoforms. These findings provided the putative identities of several endogenous functional human PGC-1α-b isoforms. Mammalian overexpression vectors of these isoforms are still in development. By using this antibody and these expression vectors to further characterize these isoforms, including determining tissue specificity, more knowledge of PGC-1α will be gained. This information could then be used to develop novel, tissue specific treatments for pharmacological intervention of diseases characterized by PGC-1α misregulation.
2

Browning of white adipose tissue by melatonin

Zarebidaki, Eleen 11 August 2015 (has links)
There are two distinct types of adipose tissue which have different functions within the body, white (WAT) and brown (BAT). Browning of WAT occurs with increases in the WAT sympathetic nervous system (SNS) drive. In this regard we previously reported that melatonin (MEL) stimulation of MEL receptor 1A (MEL1a) within the SNS outflow to the WAT might be implicated in a naturally-occurring reversal of obesity (by ~30% of total body fat). Therefore, in this study we tested the hypothesis that MEL causes browning of WAT through the stimulation of SNS drive to WAT. This was done by comparing specific browning and lipolytic markers in WAT following 10 weeks of MEL treatment, short day housing (SD), and long day housing with saline injections (LD+VEH). Browning effects of a 5 day treatment of a β3-adrenergeric (β3 AR), CL 316, 243, were also measured. We found that CL 316, 243, MEL treatment, and SD housing had increased expressions of browning markers within WAT and lipolytic activity in MEL treated animals was increased in specific WAT.
3

CHARACTERIZING PROTEIN ARGININE METHYLTRANSFERASE EXPRESSION AND ACTIVITY DURING MYOGENESIS / CHARACTERIZING PRMT BIOLOGY DURING MYOGENESIS

Shen, Nicole January 2017 (has links)
Despite the emerging importance of protein arginine methyltransferases (PRMTs) in regulating skeletal muscle plasticity, the biology of these enzymes during muscle development remains poorly understood. Therefore, our purpose was to investigate PRMT1, -4, and -5 expression and function in skeletal muscle cells during the phenotypic remodeling elicited by myogenesis. C2C12 muscle cell maturation, assessed during the myoblast stage, and during days 1, 3, 5, and 7 of differentiation, was employed as an in vitro model of myogenesis. We observed PRMT-specific patterns of expression and activity during myogenesis. PRMT4 and -5 gene expression was unchanged, while PRMT1 mRNA and protein content were significantly induced. Cellular monomethylarginines and symmetric dimethylarginines, indicative of global and type II PRMT activities, respectively, remained steady during development, while type I PRMT activity indicator asymmetric dimethylarginines increased through myogenesis. Histone 4 arginine 3 (H4R3) and H3R17 contents were elevated coincident with the myonuclear accumulation of PRMT1 and -4. Collectively, this suggests that PRMTs are methyl donors throughout myogenesis and demonstrate specificity for their protein targets. Cells were then treated with TC-E 5003 (TC-E), a selective inhibitor of PRMT1 in order to specifically examine the enzymes role during myogenic differentiation. TC-E treated cells exhibited decrements in muscle differentiation, which were consistent with attenuated mitochondrial biogenesis and respiratory function. In summary, this study increases our understanding of PRMT1, -4, and -5 biology during the plasticity of skeletal muscle development. Our results provide evidence for a role of PRMT1, via a mitochondrially-mediated mechanism, in driving the muscle differentiation program. / Thesis / Master of Science (MSc) / Protein arginine methyltransferases (PRMTs) are responsible for many important functions in skeletal muscle. However, significant knowledge gaps exist with respect to PRMT expression and activity during conditions of muscle remodeling. Therefore, the purpose of this Thesis was to investigate PRMT biology throughout skeletal muscle development. Mouse muscle cells were employed to examine characteristics of PRMT1, -4, and -5 at numerous timepoints during myogenesis. PRMTs exhibited distinct patterns of gene expression and activity during muscle maturation. A PRMT1 inhibitor (TC-E) was utilized to investigate the role of this enzyme during myogenesis. Muscle differentiation was impaired in TC-E-treated cells, which coincided with reduced mitochondrial biogenesis and respiratory function. Altogether, these results suggest a PRMT-specific pattern of expression and activity during myogenesis. Furthermore, PRMT1 plays a crucial role in skeletal muscle differentiation via a mitochondrially-mediated mechanism. Our study provides a more comprehensive view on the role of PRMTs in governing skeletal muscle plasticity.
4

Etude des voies de signalisation impliquées dans la sarcopénie : rôle du stress oxydant et de l'inactivité physique / Cell signaling involved in sarcopenia : role of oxidative stress and physical inactivity

Derbré, Frédéric 21 November 2011 (has links)
La sarcopénie est considérée comme un syndrome gériatrique se caractérisant par une diminution de la masse musculaire qui en s’aggravant sera à l’origine d’une détérioration de la force musculaire et des performances physiques. La sarcopénie est évidemment imputable au processus de vieillissement, mais son développement peut être accéléré sous l’effet de facteurs pathologiques et comportementaux. Depuis un siècle à peine, le comportement de l’homme moderne, en matière d’activité physique, a radicalement changé avec un mode de vie de plus en plus inactif. Cette inactivité chronique est apparue trop soudainement pour permettre à notre génotype de s’adapter, et contribue ainsi à accélérer ledéveloppement de la sarcopénie. Néanmoins, des interrogations subsistent concernant les mécanismes cellulaires et moléculaires par lesquels l’inactivité physique favoriserait ce syndrome gériatrique. L’objectif de ce travail de thèse était donc de déterminer certains de ces mécanismes en se centrant tout particulièrement sur le rôle des espèces dérivées del’oxygène (ERDO). En s’appuyant sur différents modèles expérimentaux d’activité (entraînement en endurance) et d’inactivité (suspension par la queue) chez le rongeur, nos travaux ont mis en évidence le rôle essentiel de la surproduction chronique d’ERDO (qu’elle soit liée à l’âge et/ou l’inactivité) dans l’activation de certains facteurs de transcription et kinases redox-sensibles impliqués dans la sarcopénie (i.e. NF-κB, p38 MAPK). Nos travaux démontrent également que l’avance en âge (et probablement l’inactivité chronique) induit une perte de réactivité de PGC-1α, un facteur de transcription redoxsensible régulant un certain nombre de mécanismes cellulaires impliqués dans la sarcopénie. Cette perte deréactivité pourrait s’expliquer par la surproduction chronique d’ERDO dans le muscle âgé / Aging causes a progressive decline in skeletal muscle mass that may lead to decreased strength and functionality. The term sarcopenia is especially used to characterize this geriatric syndrome. Numerous conditions and behaviors are considered to accelerate the progression of sarcopenia such as chronic diseases, malnutrition and physical inactivity. In millennia past, and until recently, among hunter-gatherers and like populations, down through the ages, all people werephysically very active during early life and later in their everyday occupations. In contrast, nowadays, in Western populations, with relative abundance of food, a sedentary lifestyle is the rule. This radical change in lifestyle counteracts our active phenotype, and thus promotes the development of sarcopenia. Despite the recent advances in the etiology of sarcopenia, some questions remain concerning the cellular and molecular mechanisms by which the physical inactivity promotes sarcopenia. Consequently, the aim of this thesis was to determine some of these mechanisms, and more especially the role played by reactive oxygen species (ROS). We used different experimental rodent models of activity (physical training) and inactivity (hindlimb suspension) to achieve these objectives. Our research underlines the essential role of age or/and inactivity related chronic ROS overproduction in the activation of redox-sensitive transcription factors and kinases involved in sarcopenia (i.e. NF-κB and p38 MAPK). We also demonstrated that aging (and probably lifelong inactivity) induces a loss of PGC-1α reactivity, a key redox-sensitive transcription factor regulating some cellular mechanisms involved in sarcopenia. Chronic ROS overproduction in aged skeletal muscles may explain this loss of PGC-1α reactivity
5

PGC-1α régule un programme onco-métabolique capable de réprimer l’agressivité du cancer de la prostate / PGC-1α controls an onco-metabolic pathway to restrain prostate cancer aggressiveness

Kaminski, Lisa 10 September 2018 (has links)
La reprogrammation du métabolisme est maintenant considérée comme des caractéristiques des cellules cancéreuses et une conséquence de leur adaptation à un microenvironnement hostile se traduisant par une baisse de la concentration d’oxygène et de la disponibilité des nutriments. Donc, les cellules cancéreuses sont capables d’adapter leur métabolisme pour survivre et proliférer. Des avancées récentes dans la connaissance de ces modifications permettent l’émergence de nouvelles approches thérapeutiques ciblant spécifiquement ces changements métaboliques. Un des principaux régulateurs du métabolisme cellulaire est le coactivateur transcriptionnel PGC-1α (PPARgamma coactivator1-alpha). PGC-1α contrôle, entre autres, la biogénèse mitochondriale, la phosphorylation oxydative et l’oxydation des acides gras. Récemment, il a été montré que PGC-1α facilite la biogénèse mitochondriale dans les cellules cancéreuses du sein et augmentent significativement leurs potentiels métastatiques. Au contraire, il a été montré que la surexpression de PGC-1α diminue la formation de métastases dans le mélanome et l’adénocarcinome prostatique. Cependant, les modifications métaboliques et moléculaires conduisant à l’agressivité du cancer de la prostate sont, à l’heure actuelle, peu connues. Dans ce contexte, le but de ma thèse était d’étudier le rôle de PGC-1α sur le métabolisme et l’agressivité des cellules cancéreuses de prostate. Au cours de ma thèse, nous avons démontré que la diminution de l’expression de PGC-1α augmente les trois caractéristiques fondamentales de l’agressivité tumorale : la prolifération, la migration et l’invasion. Afin de déterminer les modifications métaboliques impliquées dans ce phénotype, nous avons réalisé des expériences de métabolomiques en comparant les cellules contrôles aux cellules dont l’expression de PGC-1α est diminuée (shPGC-1α). Nous avons montré que la baisse de PGC-1α augmente significativement la biosynthèse des polyamines. Les polyamines sont impliquées dans de nombreuses fonctions cellulaires, en particulier la prolifération et la migration cellulaire. Ainsi, nous avons inhibé la synthèse des polyamines avec le DFMO, l’inhibiteur de l’enzyme limitante de la voie : ODC, ou bien des siRNA dirigés contre ODC. Nous avons montré que les effets pro-migratoires et pro-invasifs dus à l’invalidation de PGC-1α sont bloqués par le DFMO et les siRNA ODC. De façon intéressante, l’ajout de polyamines exogènes restaure partiellement l’agressivité des cellules. En accord avec ces résultats, nous montrons que ODC est surexprimée quand PGC-1α est diminué et que l’expression de ODC est régulée positivement par l’oncogène c-MYC. En s’intéressant plus en détail à cet oncogène, nous observons que son niveau d’expression augmente dans les cellules invalidées pour PGC-1α et que l’inhibition de c-MYC bloque les effets pro-migratoires et pro-invasifs dus à l’invalidation de PGC-1α. Donc c-MYC participe au phénotype agressif lié à l’augmentation de la voie de biosynthèse des polyamines. Ces résultats in vitro ont été confirmés in vivo par l’analyse des micro-métastases, ils démontrent que les cellules shPGC-1α forment plus de métastases et le traitement par le DFMO inhibe la formation de micro-métastases. Finalement, les données cliniques démontrent que l’expression de PGC-1α est diminuée chez des patients atteints de cancer de la prostate, et cette diminution est corrélée avec une augmentation de c-MYC et ODC. En conclusion, nous avons démontré que PGC-1α est le régulateur majeur d’une voie onco-métabolique par c-MYC et qui promeut l’agressivité du cancer de la prostate par l’intermédiaire de la voie de biosynthèse des polyamines. Ce nouveau circuit métabolique représente une cible thérapeutique intéressante pouvant aider à freiner les formes avancées du cancer de la prostate. / Metabolism reprogramming are now considered to be characteristic of cancer cells and a consequence of their adaptations to a hostile microenvironment resulting in a decrease in oxygen concentration (hypoxia) and the availability of nutrients, particularly glucose and glutamine. Thus, cancer cells can adapt their metabolism to survive and proliferate. Recent advances in the knowledge of these modifications allow the emergence of new therapeutic approaches targeting these metabolic changes. One of the main regulators of cellular metabolism is the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha). PGC-1α controls mitochondrial biogenesis, oxidative phosphorylation and fatty acid oxidation. Recently, it has been shown that PGC-1α promotes mitochondrial biogenesis in cancer cells and dramatically increases their metastatic potential. On the contrary, it appears that overexpression of PGC-1α decreases the formation of metastases in melanoma and prostatic adenocarcinoma. However, the metabolic and molecular changes leading to the aggressiveness of prostate cancer are unclear. Oncogenes and tumor suppressor genes are known to be able to regulate the metabolic adaptations of cancer cells. Several studies show that the number of copies of the gene is increased in 30% of prostate cancers. Transgenic mice overexpressing c-MYC in the prostate develop prostatic intraepithelial neoplasia followed by prostatic adenocarcinoma. At the cellular level, c-MYC expression has been shown to stimulate glycolysis and glutaminolysis in tumor cells, by controlling the expression of genes involved in these metabolic pathways. In addition, c-MYC is also able to increase the polyamine synthesis pathway by inducing the expression of the limiting enzyme of this pathway, ornithine decarboxylase (ODC). In this context, the purpose of my thesis was to study the role of PGC-1α on the metabolism and aggressiveness of prostate cancer cells. During my thesis, we have shown that the decrease of PGC-1α expression increases the three fundamental characteristics of tumor aggressiveness: proliferation, migration and invasion. To determine the metabolic changes involved in this phenotype, we performed metabolic experiments and compared control cells to cells where PGC-1α expression is decreased. We show that the decrease of PGC-1α significantly increases the biosynthesis of polyamines. Polyamines are involved in many cellular functions, particularly in proliferation and cell migration. Thus, we inhibit the synthesis of polyamines with DFMO, an inhibitor ODC which is the rate limiting enzyme of this pathway. We have shown that pro-migratory and pro-invasive effects due to PGC-1α knockout are blocked by DFMO and ODC siRNA. Interestingly, the addition of exogenous polyamine partially restores the aggressiveness of the cells. Consistent with these results, we show that ODC is overexpressed when PGC-1α is decreased and that ODC expression is upregulated by the c-MYC oncogene. In addition, we observe that c-MYC expression increases in cells invalidated for PGC-1α and that the inhibition of c-MYC blocks the pro-migratory and pro-invasive effects due to the invalidation of PGC-1α. Therefore, c-MYC participates in the aggressive phenotype related to the increase of the polyamine biosynthesis pathway. These in vitro results were confirmed in vivo by micro-metastasis analysis, we demonstrate that shPGC-1α cells form more metastases and treatment with DFMO inhibits the formation of micro-metastases. Clinical data indicate that PGC-1α expression is decreased in patients with prostate cancer, and this decrease correlates with an increase in c-MYC and ODC. In conclusion, we show that PGC-1α is the major regulator of an onco-metabolic which promotes prostate cancer aggressiveness via the polyamine biosynthesis pathway.
6

Retentissement musculaire cardiaque et périphérique de l'hypertension artérielle pulmonaire induite par la monocrotaline chez le rat : dysfonction mitochondriale et effet de l'exercice excentrique / Mitochondrial dysfonction and eccentric training effects on cardiac and skeletal muscle in monocrotaline-induced pulmonary hypertension

Enache, Irina 25 September 2012 (has links)
Dans un premier temps, nous avons observé la chronologie des altérations de la biogenèse et de la fonction mitochondriale dans les ventricules droit (VD) et gauche (VG) et le muscle gastrocnémien (GAS) dans un modèle animal d’hypertension artérielle pulmonaire (HTAP). Nous avons constaté une diminution précoce des facteurs impliqués dans la biogénèse mitochondriale du GAS. Plus tard, les mêmes anomalies apparaissaient dans le VD. Au stade décompensé de l’insuffisance cardiaque droite s’ajoutaient une diminution de la protéine PGC-1 , de l’activité de la citrate-synthase et de la respiration mitochondriale. L’expression des ARNm et la respiration mitochondriale du VG n’étaient pas modifiées de façon significative.Dans un deuxième temps, nous avons étudié l’effet de l’entraînement en mode excentrique sur le même modèle d’HTAP. La survie des rats entraînés n’était pas différente de celle des rats sédentaires et la tolérance hémodynamique évaluée par échocardiographie et cathétérisme cardiaque a été bonne. Le bénéfice de l’entraînement s’est traduit par une augmentation de la vitesse maximale de course dans les deux groupes entraînés, malades et témoins. / We assessed the time courses of mitochondrial biogenesis factors and respiration in the right ventricle (RV), gastrocnemius (GAS) and left ventricle (LV) in a model of pulmonary-hypertensive (PH) rats induced by monocrotaline (MT). The expression of the studied genes was decreased early in the MT GAS. At 4 weeks, the MT GAS and MT RV showed decreased mRNA levels whatever the stage of disease, but PGC-1 protein and citrate-synthase activity were significantly reduced only atthe decompensated stage. The functional result was a significant fall in mitochondrial respiration at the decompensated stage in the RV and GAS. The mRNA expression and mitochondrial respiration were not significantly modified in the MT LV. Secondly, we assessed the effects of eccentric exercise training (ECCt) in MT rats with PH. ECCt was initiated 2 weeks after MT injection for 4 weeks. The trained MT rats survival was not different from that of sedentary rats. ECCt was not detrimental on hemodynamic condition estimated by echocardiography and right heart catheterization. Maximal speed significantly increased in trained rats. The mRNA expression of mitochondrial biogenesis factors were not significantly modified in skeletal muscle and in RV.
7

Effets du GSK773, un activateur de l'AMPK, sur le métabolisme et la différenciation de cellules musculaires déficitaires en carnitine palmitoyl tranférase 2 (CPT2) / Effects of GSK773, an AMPK activator, on metabolism and differentiation of carnitine palmitoyl transferase 2 (CPT2) deficient muscles cells

Boufroura, Fatima-Zohra 08 March 2018 (has links)
Le déficit héréditaire en Carnitine Palmitoyl Transférase 2 (CPT2), l’un des déficits de l’oxydation mitochondriale des acides gras (OAG) les plus fréquents, est caractérisé dans sa forme adulte par une myopathie métabolique avec des épisodes récurrents de douleurs musculaires, de myoglobinurie et de rhabdomyolyse, habituellement déclenchés par un exercice prolongé ou un jeûne. A l’heure actuelle, il n’y a pas de traitement pharmacologique efficace pour la correction de ce déficit à l’exception de prise en charge nutritionnelle. Mon travail de thèse a porté sur l’étude du potentiel thérapeutique du composé GSK773 un activateur direct de l’AMP-activated Protein Kinase (AMPK), un senseur énergétique de la cellule, dans des myotubes de quatre patients déficitaires en CPT2. En effet, l'AMPK est considérée comme une cible thérapeutique potentielle dans de nombreux troubles métaboliques ou neurodégénératifs courants associés aux dysfonctionnements mitochondriaux. Nous montrons que le composé GSK773 est capable de stimuler les capacités résiduelles de l’OAG et de corriger le flux d’OAG dans des myotubes déficitaires en CPT2 (n=4) après un traitement par 30µM pendant 48h. L’étude par western-blot et par immunofluorescence montre que le GSK773 augmente la quantité de protéine mutante CPT2. L'analyse des intermédiaires C16-acylcarnitines montre que les myotubes déficients en CPT2 présentent, comme prévu, une accumulation de C16-acylcarnitines significativement diminuée après le traitement par le GSK773. De manière intéressante, l'IF et l’xCELLigence, une nouvelle technique basée sur la mesure de l’impédance électrique en temps réel, montrent un processus de différenciation altéré dans les myotubes de patients déficitaires en CPT2 par rapport aux cellules témoins, qui est corrigé par le GSK773. Nous avons également montré que le GSK773 induit une conversion des fibres musculaires vers les fibres de type I lentes/oxydatives, mais aussi une amélioration générale de la qualité du réseau mitochondrial accompagnée d’une biogenèse mitochondriale et une augmentation du niveau de ROS suggérant que le GSK773 agirait sur la plasticité musculaire. D’un point de vue mécanistique, nous avons montré que les effets du GSK773 passent par l’AMPK, PGC-1α, p38 MAPK et les ROS. Ainsi, ces résultats suggèrent que le GSK773 améliore les paramètres métaboliques et structuraux dans les myotubes déficients en CPT2 et que l'AMPK pourrait représenter une cible thérapeutique hautement pertinente pour la correction pharmacologique du déficit en CPT2. / Carnitine Palmitoyl Transferase 2 (CPT2) deficiency is among the most common inherited defects of mitochondrial fatty acid oxidation (FAO). A frequent phenotype is an early adult-onset myopathy characterized by recurrent episodes of muscle pain, myoglobinuria and rhabdomyolysis usually triggered by prolonged exercise or fasting. To date, there is no treatment of this disorder other than dietary management. AMPK is considered as a potential therapeutic target in many common metabolic or neurodegenerative disorders associated to mitochondrial dysfunctions. Thus, we tested the therapeutic potential of the direct AMPK activator GSK773 in myotubes from four CPT2-deficient patients. We show that GSK773 is able to stimulate residual FAO capacities in a dose- and time-dependent manner. Correction of CPT2 defect is achieved after treatment with GSK773 at 30µM for 48h. Western-blots analysis and Immunostaining shows that GSK773 increases the amount of CPT2 mutant protein. Analysis of acylcarnitine intermediates in the culture media shows that CPT2-deficient myotubes exhibit, as expected, an accumulation of C16-acylcarnitines that is significantly decreased after GSK773 treatment. Surprisingly, immunofluorescence and xCELLigence (a real-time monitoring of cell culture technic) show an impaired differentiation process in CPT2-deficient myotubes that is corrected by GSK773. We also show that GSK773 induces a shift in myosin-heavy-chain isoforms toward slow oxidative fiber types, improves the quality of mitochondrial network with an induction of mitochondrial biogenesis and increases ROS levels, suggesting that GSK773 might induce muscle plasticity. Finally, from a mechanistic point of view, siRNAs experiments showed that the effects triggered by GSK773 implicate AMPK, PGC-1α, ROS and p38 MAPK. Altogether these results suggest that GSK773 improves metabolic and structural parameters in CPT2-deficient myotubes and that AMPK might represent a highly relevant therapeutic target for pharmacological correction of inborn CPT2 deficiency.
8

FNDC5-Expression im Skelettmuskel bei chronischer Herzinsuffizienz - Relevanz von inflammatorischen Zytokinen und Angiotensin II

Gleitsmann, Konstanze 19 December 2016 (has links) (PDF)
Die Herzinsuffizienz ist eine der häufigsten chronischen Erkrankungen mit progressivem Krankheitsverlauf. Dieser ist verschiedenen Kompensationsmechanismen geschuldet, die zunächst zur Verbesserung, über einen längeren Zeitraum hinweg jedoch zur Verschärfung der Symptomatik führen. Durch erhöhte Konzentrationen inflammatorischer Zytokine im Rahmen dieser Krankheit kommt es unter anderem zu pathologischen Veränderungen in Muskel- als auch Fettgewebe. Das kürzlich in der Literatur als PGC-1α reguliert beschriebene Molekül FNDC5 (Spaltprodukt Irisin) wird als Myokin bezeichnet, welches zwischen Muskel- und Fettgewebe vermittelt. Bis dato ist jedoch ungeklärt, ob und inwiefern es einen Zusammenhang zwischen einer Herzinsuffizienz, erhöhten Konzentrationen proinflammatorischer Zytokine und dem Molekül FNDC5 in der Skelettmuskulatur gibt. Um diesen Fragestellungen nachzugehen, wurde in der vorliegenden Arbeit zum einen durch LAD-Ligatur in Ratten eine Herzinsuffizienz induziert, um die systemischen Verhältnisse dieser Erkrankung im Tiermodell bestmöglich nachzuempfinden. Zum anderen wurden Mäuse mit TNF-α oder Ang II behandelt und C2C12-Myotuben mit TNF-α, Ang II sowie einer Zytokinkombination inkubiert, um den Einfluss der Zytokine bzw. des Hormons auf die FNDC5-Expression zu untersuchen. Anschließend wurden die Expression von FNDC5 auf mRNA- und Proteinebene sowie die Expression der PGC-1α-mRNA in Skelettmuskelbiopsien bestimmt. Es konnte nachgewiesen werden, dass eine Herzinsuffizienz sowie der Einfluss inflammatorischer Zytokine zur signifikanten Expressionsverminderung von FNDC5 führt. Ang II hingegen bewirkte nicht in allen Versuchen eine deutliche Reduktion der FNDC5-Expression. Außerdem wurde gezeigt, dass die Signaltransduktionswege über p38 und p42/44 MAPK nicht für die Wirkung der Zytokinkombination auf die FNDC5-Expression verantwortlich sind.
9

Regulation of hepatic glucose homeostasis and Cytochrome P450 enzymes by energy-sensing coactivator PGC-1α

Aatsinki, S.-M. (Sanna-Mari) 12 May 2015 (has links)
Abstract Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of energy metabolism and mitochondrial biology in high-energy cell types and tissues. The regulation of PGC-1α is versatile, and both transcriptional and post-transcriptional mechanisms play major roles. External stimuli affect PGC-1α-regulation which in turn adapts cellular signals to meet them. For example, conditions like fasting and diabetes mellitus (DM) are known to activate PGC-1α expression in the liver, resulting in enhanced de novo glucose production, gluconeogenesis. In the present study, the mechanisms of hepatic PGC-1α regulation and PGC-1α-regulated functions were elucidated. We found that PGC-1α was induced by oral type 2 diabetes therapeutic metformin, via AMPK and SIRT1, regulating the mitochondrial gene response, against previous assumptions. Simultaneously, gluconeogenesis was repressed by other means. Furthermore, PGC-1α upregulated the anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). PGC-1α also diminished interleukin 1β-mediated inflammatory response in hepatocytes. Novel, xenobiotic and endobiotic metabolizing Cytochrome P450 enzymes regulated by PGC-1α were also identified in this thesis. CYP2A5 was induced by PGC-1α through hepatocyte nuclear factor 4α (HNF-4α) coactivation. Also, vitamin D metabolizing CYP2R1 and CYP24A1 were identified as novel genes regulated by PGC-1α, suggesting a role for PGC-1α in the regulation of active vitamin D levels. The findings presented in this thesis provide insight into the pathology of glucose perturbations such as type 2 diabetes, and stimulate discovery of therapeutic agents to treat this disease. Furthermore, the findings suggest that vitamin D metabolism and energy metabolism are tightly linked, with PGC-1α emerging as a novel mediator. / Tiivistelmä Peroksisomiproliferaattori-aktivoituvan reseptori γ:n koaktivaattori 1α (PGC-1α) on merkittävä glukoosiaineenvaihdunnan ja mitokondrioiden toiminnan säätelijä korkeaenergisissä soluissa ja kudoksissa. PGC-1α:a säädellään monin tavoin: sekä transkriptionaalisella säätelyllä että transkription jälkeisellä muokkauksella on merkittävä rooli. Monet ulkoiset tekijät säätelevät PGC-1α:n aktiivisuutta, joka puolestaan säätelee solunsisäisiä signaalireittejä vastaamaan tähän signaaliin. Esimerkiksi paasto ja diabetes mellitus (DM) ovat fysiologisia tiloja, jotka lisäävät voimakkaasti PGC-1α:n ilmentymistä maksassa, jolloin glukoosin uudistuotanto eli glukoneogeneesi kiihtyy. Tässä väitöskirjassa tutkittiin PGC-1α:n säätelyä sekä PGC-1α -säädeltyjä signaalireittejä maksassa. Osoitimme, että tyypin 2 diabeteslääke metformiini indusoi PGC-1α:n ilmentymistä maksassa, vastoin aikaisempia käsityksiä. PGC-1α indusoitui AMPK:n ja SIRT1:n välityksellä, säädelleen edelleen mitokondriaalisten geenien aktiivisuutta. Samalla glukoneogeneesi kuitenkin repressoitui muilla mekanismeilla. Lisäksi osoitimme, että PGC-1α indusoi tulehdusreaktiota vaimentavaa interleukiini 1 reseptorin antagonistia (IL1Rn). PGC-1α esti interleukiini 1β:n aiheuttamaa tulehdusvastetta hepatosyyteissä. Lisäksi väitöskirjassa tunnistettiin uusia, PGC-1α -säädeltyjä lääkeaineita ja elimistön sisäisiä yhdisteitä metaboloivia sytokromi P450 -entsyymejä (CYP). Hiiren CYP2A5:n ilmentymisen osoitettiin olevan PGC-1α- ja HNF4α-välitteistä. Lisäksi osoitettiin, että D-vitamiinia metaboloivat CYP2R1 ja CYP24A1 ovat uusia PGC-1α -säädeltyjä geenejä. Tämä löydös viittaa siihen, että PGC-1α:lla on rooli aktiivisen D-vitamiinin säätelyssä. Tämän väitöskirjan löydökset lisäävät tietoa glukoosiaineenvaihdunnan häiriöiden kuten tyypin 2 diabeteksen molekulaarisista mekanismeista, joita voidaan hyödyntää mahdollisten uusien lääkeaineiden kehittämisessä. Lisäksi väitöskirjassa osoitettiin, että D-vitamiinimetabolia on kytköksissä energia-aineenvaihduntaan ja että PGC-1α:lla on tässä rooli, jota ei aiemmin ole tunnettu.
10

Contrôle de la masse fonctionnelle des cellules β pancréatiques par les glucocorticoïdes et pgc-1α / Control of the pancreatic β-cell functional mass by glucocorticoids and pgc-1α

Besseiche, Adrien 13 October 2015 (has links)
Les glucocorticoïdes (GCs) ont des effets diabétogènes avérés. Précédemment, notre équipe a également pu montrer que les GCs, en association avec le corégulateur transcriptionnel PGC-1α, sont impliqués dans la programmation fœtale du diabète de type 2 (DT2). Le DT2 est une maladie métabolique, conséquence à la fois de l’insulinorésistance et d’un défaut de sécrétion d’insuline en partie dû à la diminution de la masse des cellules β. Au laboratoire nous nous intéressons donc d’une part aux mécanismes sous-jacents des effets diabétogènes des GCs et d’autre part, aux mécanismes permettant d’améliorer la sécrétion d’insuline en restaurant une masse fonctionnelle de cellules β. Dans la première partie de cette thèse, nous avons montré que PGC-1α, dont l’expression est stimulée par les GCs dans les cellules β, induit un double stress énergétique et oxydatif impliqué dans l’altération de la sécrétion d’insuline. Dans la deuxième partie, nous avons montré grâce à un model murin d’insulinorésistance sévère par surexposition aux GCs, que l’adaptation compensatrice de la masse fonctionnelle des cellules β se fait par un processus de néogenèse, impliquant la réexpression du facteur Ngn3. Ce processus, indépendant de l’effet des GCs sur le pancréas, alimente l’hypothèse d’un facteur circulant libéré par les organes insulinorésistants pour instruire le pancréas endocrine et initier la néogenèse des cellules β. En conclusion, nos travaux associent indirectement les GCs : 1/ à un effet délétère sur la sécrétion et impliquant PGC-1α et 2/ à un effet bénéfique sur la masse β et impliquant Ngn3. Ces deux voies constituent des perspectives thérapeutiques intéressantes du DT2. / Glucocorticoids (GCs) are hormones secreted in response to stress and that display diabetogenic effects. Previously, our team was able to demonstrate that GCs, in combination with the transcriptional co-regulator PGC-1α, are involved in fetal programming of type 2 diabetes (T2D). T2D is a metabolic disease characterized by fasting hyperglycemia, consequence of both insulin resistance and an insulin secretory defect, partly due to the decrease of the mass of β cells. In the laboratory we are therefore interested in understanding the mechanisms underlying diabetogenic effects of GCs, and mechanisms that improve insulin secretion and functional β-cell mass. In the first part of this thesis, we have shown that PGC-1α, whose expression is strongly stimulated by GCs in β cells, induces both energy and oxidative stress involved in impaired insulin secretion. In the second part of this thesis, we demonstrated through a murine model of massive GCs overexposure – which induces severe insulin resistance – that the adaptation of the functional β-cell mass in order to counteract insulin resistance occurs through a neogenesis process, involving the re-expression of Ngn3 factor. This process is independent of the effect of GCs on the pancreas. We hypothesize that a circulating factor released by insulin-resistant organs will instruct the endocrine pancreas to initiate β-cells neogenesis. In conclusion, our work indirectly associate GCs: 1/ to a deleterious effect on the secretion involving PGC-1α and 2/ to a beneficial effect on the β-cell mass and involving Ngn3. These two pathways are interesting therapeutic perspectives for curing T2D.

Page generated in 0.4288 seconds