• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 17
  • 12
  • 9
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 122
  • 25
  • 20
  • 20
  • 18
  • 18
  • 18
  • 17
  • 16
  • 15
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Pharmacodynamics of Enzyme Induction and its Consequences for Substrate Elimination

Magnusson, Mats O. January 2007 (has links)
Enzyme induction is a process whereby a molecule enhances the expression of enzymes. If the affected enzymes are involved in the elimination of a drug, this may result in a drug interaction. Induction is therefore of major concern during drug development and in clinical practice. The induction process depends on the half-life of the induced enzyme, the pharmacokinetics of the inducing agent, and the relationship between the inducer’s concentration and the induction stimulus. The aim of the conducted research was to investigate these key aspects of enzyme induction and the consequences that induction has for substrate elimination. Successful investigations of the induction process presuppose the existence of appropriate methods for the estimation of the metabolic activity. Enzyme activity measurements can be conducted in tissues with low enzyme content using the analytical method presented here. A model was developed describing the changes in the pharmacokinetics of clomethiazole and its metabolite NLA-715, that are attributable to carbamazepine induction. The consequences of the induction was explained using a mechanistic approach, acknowledging food-induced changes in the blood flow to the liver, and interpreting in vitro generated metabolic information. The time course of the induction process was examined in two investigations. In the first of these, the pharmacokinetics of the autoinducing drug phenobarbital and its effect on several enzymes were described in rats. This was accomplished by integrating the bidirectional interaction between drug and enzymes in a mechanistic manner. In the final investigation, the time course of the increase and cessation in enzyme activity was studied in healthy volunteers treated with carbamazepine. This investigation allowed the half-lives of CYP3A and CYP1A2 to be estimated. The key aspects of the enzyme induction process have been examined using mechanistic induction models. These novel models improve the understanding of the induction process and its consequences for substrate elimination.
62

Assessment of microvascular function by use of transdermal iontophoresis : methodological aspects

Droog Tesselaar, Erik January 2007 (has links)
Assessment of the microcirculation is of major importance in understanding the physiology of the vasculature and in assessing te vascular effects of pathological conditions such as diabetes, hypertension and sepsis. Transdermal iontophoresis can be used to non‐invasively introduce vasoactive drugs into the skin. The response to these drugs of the local cutaneous microvasculature can be measured by laser Doppler flowmetry methods. Although these techniques have been used together for over two decades, there are still important methodological issues to be resolved. This work is aimed at optimizing transdermal iontophoresis as a tool for microvascular assessment by focusing on the main methdological issues: non‐specific vasodilatation, drug delivery protocols and analysis of blood flow data. Non‐specific vasodilatation, an increase blood flow during iontophoresis of non‐vasoactive compounds, is an important problem as it interferes with the response to the administered drug. By investigating this effect in healthy volunteers, we found that the extent of the non‐specific response differs between the positive and negative electrode and that it is dependent on the voltage over the skin andon the ionic strength of the vehicle in which the drug is dissolved. We also found that the extent of the non‐specific response could be reduced by applying local anesthetics and by pre‐treatment with antihistamine drugs. These results suggest that non‐specific effects could be mediated by depolarization or hyperpolarisation of cells, triggering neural and histamine related mechanisms that finally lead to vasodilatation of the local microvasculature. To prevent non‐specific effects from occurring during the experiments, our results show that the current strength and the total electric charge during iontophoresis should be limited to 0.02 mA and12 mC, respectively. Furthermore, drug solutions at physiological ionic strengths should be used. Under these conditions, adequate responses to the most commonly used drugs, acetylcholine (ACh) and sodium nitroprusside (SNP), are obtained while no significant non‐specific vasodilatation occurs. The results of our investigations show that blood responses to ACh and SNP applied by a single iontophoretic pulse can well be escribed by conventional dose‐response models, which enables a more powerful analysis and comparison between drugs or possibly patient groups as compared with conventional aalysis methods. Finally, we have incorporated drug transport and physiological response to the local drug concentration during iontophoresis of vasoactve drugs into a single model. Validation of this model using measured responses to ACh and SNP shows that the commonly used assumption that the local drug concentration during iontophoresis is linearly proportional to the electric charge may not be valid. / Mikrocirkulationen, som inbegriper kroppens minsta blodkärl, transporterar syre och näringsämnen till våra celler. Vissa sjukdomar, som diabetes, hjärt‐kärlsjukdom och akut blodförgiftning leder till förändringar hos mikrocirkulationen. Mekanismerna bakom dessa förändringar är delvis okända. Det finns därför ett stort behov av kliniska mättekniker som kan bedöma mikrocirkulationens funktion. Vid jontofores placeras en elektrod tillsammans med ett läkemedel på huden. När en svag elektrisk ström anbringas transporteras läkemedlet ner genom hudlagren. Effekterna av ett kärlaktivt läkemedel som appliceras på detta sätt kan sedan avläsas non‐invasivt med laser Doppler‐teknik. En stor fördel med jontoforesmetoden, förutom att den är non‐invasiv, är att läkemedelsdoserna som tillförs kroppen är mycket små och därmed ger de inte upphov till några systemiska bi‐effekter. I avhandlingen presenteras forskning, vilkas målsättning är att lösa några av de viktiga frågorna kring transdermal jontofores så att tekniken optimeras för att denskall kunna brukas som ett verktyg vid kliniska undersökningar av mikrocirkulationen. Den första delen ägnas ett fenomen som kallas ospecifik vasodilatation. Det uppstår vid jontofores av substanser som är inte kärlaktiv, som vatten och koksaltlösning. Resultaten från dessa försök indikerar att den ospecifika vasodilatationen beror på framför allt spänningen över huden, vilken i sin tur är relaterad till jon‐koncentrationen hos läkemedelslösningen. Vidare registreras att mekanismen bakom den ospecifika vasodilatationen delvis är neuralt medierad genom att de till stor del år att förhindra med hjälp av lokal bedövning. Dessutom leder förbehandling med anti‐histamina läkemedel till minskade ospecifika reaktioner, vilket också indikerar att lokala inflammatoriska processer är inblandande. Den andra delen av avhandlingen ägnas att optimera försöksprotokollen för jontofores. Till att börja med utvecklas ett protokoll som ger ett adekvat läkemedelssvar samtidigt som ospecifika effekter minimeras. Det visar sig är möjligt genom att begränsa strömstyrkan och den elektriska laddningen under jontoforesen och genom att använd läkemedelslösningar som har en fysiologisk jonstyrka. Resultaten visar också att blodflödesförändringen som registreras under jontofores av acetylkolin och natriumnitroprussid kan eskrivas med hjälp av konventionella dos‐responsmodeller, vilket möjliggör en mer exakt analys av det mikrocirkulatoriska svaret samt underlättar jämförelse mellan olika läkemedel elle patientgrupper. Slutligen presenteras en mekanistisk model för det mikrocirkulatoriska svaret vid jontofores. Modellen beskriver läkemedlets transport från elektroden ner genom huden, clearance i huden vilken beror på diffusion och det lokala blodflödet, samt förändringen i blodflöde som sker på grund av läkemedlet. Modellen valideras genom försök på försökspersoner och resultaten visar att förändringarna i blodflödet åstadkommet av acetylklin och natriumnitroprussid med denna modell kan beskrivas på ett exakt sätt. Vidare visar resultaten att det sker en betydande clearance av läkemedel i huden under jontofores. Detta har väsentlig betydelse när man ska uppskatta den lokala jontoforesdosen. / The author changed surname from Droog to Tesselaar in January 2006.
63

A Pharmacokinetic and Pharmacodynamic Rationale for Perioperative Cancer Chemotherapy in Patients with Peritoneal Carcinomatosis

Van der Speeten, Kurt January 2010 (has links)
Peritoneal carcinomatosis (PC) is a common manifestation of both gastrointestinal and gynecologic malignancies. Until recently, this condition was considered beyond curative intent treatment. Since the 1980s, new treatment strategies combining cytoreductive surgery (CRS) with perioperative intraperitoneal and intravenous chemotherapy have emerged. The underlying hypothesis considers CRS responsible for the removal of the macroscopic disease and that perioperative chemotherapy should address the residual microscopic disease. These new treatment regimens have presented encouraging clinical results that contrast with prior failure. The parameters for perioperative chemotherapy are mainly extrapolated from literature on peritoneal dialysis and data from systemic chemotherapy. The overall aim of this thesis was to provide a pharmacokinetic and pharmacodynamic rationale for perioperative intraperitoneal (IP) and intravenous (IV) chemotherapy in PC patients and, to assess its toxicity. After intraoperative IV administration of 5-fluorouracil or ifosfamide, substantial levels of these drugs were found inside the peritoneal fluid and tumor nodules (Papers I and II). This created a pharmacologically advantageous situation whereby a normothermic administered IV drug was subject to the effect of the local hyperthermia in the peritoneal fluid and tumor nodule. High levels of 5-fluouracil, ifosfamide and doxorubicin were observed inside the tumor nodules (Papers I, II and III) and, the identical pharmacokinetic advantage (expressed as Area Under the Curve (AUC) IP/IV ratios)) resulted in different drug levels of doxorubicin according to the density of the tumor nodules (Paper III). These data stressed the importance of pharmacodynamic variables such as tumor nodule density, size, and, vascularity. Therefore, the tumor nodule is proposed as a more appropriate pharmacological endpoint than AUC ratios. After IP Mitomycin C administration in PC patients with a contracted abdomen, mitomycin clearance from the abdomen decreased (Paper IV), which indicated  these patients at risk of under-treatment. Consequently, these pharmacologic data indicate a change in dosimetry for these treatment protocols might be warranted according to the diffusion area. Although diffusional vectors are viewed the main driving force for these treatment protocols, only pharmacokinetic variables such as dose, volume and duration are considered. As pharmacodynamic variables are equally important in the pharmacological assessment of cytotoxic effect, the tumor nodule was proposed as the center of a new conceptual model (Paper I). Mitomycin C data on non-metabolizers ( Paper IV) indicated the cytotoxicity of these cancer chemotherapy protocols is at the level of the individual tumor nodules. The morbidity and mortality of a new bidirectional intraoperative chemotherapy regimen in PC patients was analyzed (Paper V) which provided a means for identifying subsets of patients at risk for increased toxicity. This thesis provides pharmacokinetic and pharmacodynamic guidance for improving perioperative chemotherapy treatment strategies in PC patients and reports its toxicity.
64

The effect of oral lipids and lipoproteins on the biodistribution, metabolism and electrocardiographic side-effects of halofantrine

Patel, Jigar Unknown Date
No description available.
65

The effects of hyperlipidemia on the pharmacokinetic and pharmacodynamic aspects of amiodarone and ketoconazole

El Sayed, Dalia Unknown Date
No description available.
66

Model-Based Therapeutics for Type 1 Diabetes Mellitus

Wong, Xing-Wei January 2008 (has links)
The incidence of Type 1 diabetes is growing yearly. Worryingly, the aetiology of the disease is inconclusive. What is known is that the total number of affected individuals, as well as the severity and number of associated complications are growing for this chronic disease. With increasing complications due to severity, length of exposure, and poor control, the disease is beginning to consume an increasingly major portion of healthcare costs to the extent that it poses major economic risks in several nations. Research has shown that intensive insulin therapy aimed at certain minimum glycosylated haemoglobin threshold levels reduces the incidence of complications by up to 76% compared to conventional insulin therapy. Moreover, the effects of such intensive therapy regimes over a 6.5y duration persists for at least 10y after, a so called metabolic memory. Thus, early intervention can slow the momentum of complications far more easily than later intervention. Early, safe, intensive therapy protocols offer potential solutions to the growing social and economic effects of diabetes. Since the 1970s, the artificial endocrine pancreas has been heralded as just this type of solution. However, no commercial product currently exists, and ongoing limitations in sensors and pumps have resulted in, at best, modest clinical advantages over conventional methods of insulin administration or multiple daily injection. With high upfront costs, high costs of consumables, significant complexity, and the extensive infrastructure and support required, these systems and devices are only used by 2-15% of individuals with Type 1 diabetes. Clearly, there is an urgent need to address the large majority of the Type 1 diabetes population using conventional glucose measurement and insulin administration. For these individuals, current conventional or intensive therapies are failing to deliver recommended levels of glycaemic control. This research develops an understanding of clinical glycaemic control using conventional insulin administration and glucose measurement techniques in Type 1 diabetes based on a clinically validated in silico virtual patient simulation. Based on this understanding, a control protocol for Type 1 diabetes that is relatively simple and clinically practical is developed. The protocol design incorporates physiological modelling and engineering techniques to adapt to individual patient clinical requirements. By doing so, it produces accurate, patient-specific recommendations for insulin interventions. Initially, a simple, physiological compartmental model for the pharmacokinetics of subcutaneously injected insulin is developed. While the absorption process itself is subject to significant potential variability, such models enable a real-time estimation of plasma insulin concentration. This information would otherwise be lacking in the clinical environment of outpatient Type 1 diabetes treatment due to the inconvenience, cost, and laboratory turnaround for plasma insulin measurements. Hence, this validated model offers significant opportunity to optimise therapy selection. An in silico virtual patient simulation tool is also developed. A virtual patient cohort is developed on patient data from a representative cohort of the broad diabetes population. The simulation tool is used to develop a robust, adaptive protocol for prandial insulin dosing against a conventional intensive insulin therapy, as well as a controls group representative of the general diabetes population. The effect on glycaemic control of suboptimal and optimal, prandial and basal insulin therapies is also investigated, with results matching clinical expectations. To gauge the robustness of the developed adaptive protocol, a Monte Carlo analysis is performed, incorporating realistic and physiological errors and variability. Due to the relatively infrequent glucose measurement in outpatient Type 1 diabetes, a method for identifying the diurnal cycle in effective insulin sensitivity and modelling it in retrospective patient data is also presented. The method consists of identifying deterministic and stochastic components in the patient effective insulin sensitivity profile. Circadian rhythmicity and sleep-wake phases have profound effects on effective insulin sensitivity. Identification and prediction of this rhythm is of utmost clinical relevance, with the potential for safer and more effective glycaemic control, with less frequent measurement. It is thus a means of further enhancing any robust protocol and making it more clinically practical to implement. Finally, this research presents an entire framework for the realistic, and rapid development and testing of clinical glycaemic control protocols for outpatient Type 1 diabetes. The models and methods developed within this framework allow rapid and physiological identification of time-variant, patient-specific, effective insulin sensitivity profiles. These profiles form the responses of the virtual patient and can be used to develop and robustly test clinical glycaemic control protocols in a broad range of patients. These effective insulin sensitivity profiles are also rich in dynamics, specifically those circadian in nature which can be identified, and used to provide more accurate glycaemic prediction with the potential for safer and more effective control.
67

The in vitro and in vivo pharmacokinetic parameters of polylactic-co-glycolic acid nanoparticles encapsulating anti-tuberculosis drugs / L.L.I.J. Booysen

Booysen, Laetitia Lucretia Ismarelda Josephine January 2012 (has links)
Tuberculosis (TB) is an infectious, deadly disease, caused by Mycobacterium tuberculosis (M.tb). In 2010, there were 8,8 million incident cases of TB globally. South Africa currently has the third highest TB incident cases worldwide. In an attempt to address the challenges facing TB chemotherapy, among which frequent dosing and long duration of therapy resulting in poor patient compliance, a novel poly(DL-lactic-co-glycolic) acid (PLGA) nanoparticulate drug delivery system (DDS) encapsulating anti-TB drugs was developed. It is hypothesised that this nanoparticulate DDS will address the challenges mentioned by enabling decreased dosing frequency, shortening duration of therapy and minimising adverse side effects. Therefore, favourable modification of pharmacodynamic (PD) and pharmacokinetic (PK) properties of the conventional anti-TB drugs was demonstrated. Furthermore, the nanoparticles will provide a platform for drug delivery to macrophages that serve as hosts for M.tb. The study design was based on determining specific physicochemical properties of the nanoparticulate DDS to elucidate the hypothesis. Spray-dried PLGA nanoparticles were prepared using the double emulsion solvent evaporation technique. In vivo analysis of macrophage uptake and possible immunological response in mice were evaluated. In vitro protein-binding assays of PLGA nanoparticles encapsulating anti-TB drugs isoniazid (INH) and rifampicin (RIF) were performed with subsequent in vivo tissue distribution assays to support protein-binding data generated. Finally, PK/PD analyses were conducted to evaluate the effect of nanoencapsulation on the anti-TB drugs. These involved in vitro assays to determine if sufficient drug was released from the nanoparticles to exhibit minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). Furthermore, in vivo drug distribution and drug release kinetics assays of encapsulated RIF, INH, pyrazinamide (PZA) and ethambutol (ETB) in a mouse model were performed. The results confirmed that the PLGA nanoparticles (<250 nm, low positive zeta potential) were taken up by macrophages in vivo with no significant immunological effect. Furthermore the nanoparticles were present in the brain, heart, kidneys, lungs, liver and spleen for up to 7 days following once-off oral dosing at 13.23± 0.11%, 16.81± 0.11%, 54.89± 0.95%, 15.61± 1.15%, 48.48± 2.28% and 5.73± 0.21%, respectively. This was further confirmed by drug analysis demonstrating the presence of INH, RIF and ETB at different time points up to 7 days in the lungs, kidneys, liver and spleen. However, PZA was not detected. Nanoencapsulated RIF and INH exhibited MICs and MBCs in vitro over 14 days and these drugs were also observed in plasma for up to 7 days post once-off oral dosing. ETB and PZA were observed up to 3 days. From the results generated, it can be concluded that the nanoparticles were taken up by macrophages without eliciting an immune response. This provides a platform for drug delivery to specific sites. Furthermore, the nanoparticulate DDS exhibited sustained drug release in vitro and in vivo over a number of days above the MIC for the drugs analysed. Sustained drug distribution was also observed. It can therefore be concluded that the hypothesised reduction in dose frequency and duration of therapy for this DDS is a possibility / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013
68

The in vitro and in vivo pharmacokinetic parameters of polylactic-co-glycolic acid nanoparticles encapsulating anti-tuberculosis drugs / L.L.I.J. Booysen

Booysen, Laetitia Lucretia Ismarelda Josephine January 2012 (has links)
Tuberculosis (TB) is an infectious, deadly disease, caused by Mycobacterium tuberculosis (M.tb). In 2010, there were 8,8 million incident cases of TB globally. South Africa currently has the third highest TB incident cases worldwide. In an attempt to address the challenges facing TB chemotherapy, among which frequent dosing and long duration of therapy resulting in poor patient compliance, a novel poly(DL-lactic-co-glycolic) acid (PLGA) nanoparticulate drug delivery system (DDS) encapsulating anti-TB drugs was developed. It is hypothesised that this nanoparticulate DDS will address the challenges mentioned by enabling decreased dosing frequency, shortening duration of therapy and minimising adverse side effects. Therefore, favourable modification of pharmacodynamic (PD) and pharmacokinetic (PK) properties of the conventional anti-TB drugs was demonstrated. Furthermore, the nanoparticles will provide a platform for drug delivery to macrophages that serve as hosts for M.tb. The study design was based on determining specific physicochemical properties of the nanoparticulate DDS to elucidate the hypothesis. Spray-dried PLGA nanoparticles were prepared using the double emulsion solvent evaporation technique. In vivo analysis of macrophage uptake and possible immunological response in mice were evaluated. In vitro protein-binding assays of PLGA nanoparticles encapsulating anti-TB drugs isoniazid (INH) and rifampicin (RIF) were performed with subsequent in vivo tissue distribution assays to support protein-binding data generated. Finally, PK/PD analyses were conducted to evaluate the effect of nanoencapsulation on the anti-TB drugs. These involved in vitro assays to determine if sufficient drug was released from the nanoparticles to exhibit minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). Furthermore, in vivo drug distribution and drug release kinetics assays of encapsulated RIF, INH, pyrazinamide (PZA) and ethambutol (ETB) in a mouse model were performed. The results confirmed that the PLGA nanoparticles (<250 nm, low positive zeta potential) were taken up by macrophages in vivo with no significant immunological effect. Furthermore the nanoparticles were present in the brain, heart, kidneys, lungs, liver and spleen for up to 7 days following once-off oral dosing at 13.23± 0.11%, 16.81± 0.11%, 54.89± 0.95%, 15.61± 1.15%, 48.48± 2.28% and 5.73± 0.21%, respectively. This was further confirmed by drug analysis demonstrating the presence of INH, RIF and ETB at different time points up to 7 days in the lungs, kidneys, liver and spleen. However, PZA was not detected. Nanoencapsulated RIF and INH exhibited MICs and MBCs in vitro over 14 days and these drugs were also observed in plasma for up to 7 days post once-off oral dosing. ETB and PZA were observed up to 3 days. From the results generated, it can be concluded that the nanoparticles were taken up by macrophages without eliciting an immune response. This provides a platform for drug delivery to specific sites. Furthermore, the nanoparticulate DDS exhibited sustained drug release in vitro and in vivo over a number of days above the MIC for the drugs analysed. Sustained drug distribution was also observed. It can therefore be concluded that the hypothesised reduction in dose frequency and duration of therapy for this DDS is a possibility / Thesis (PhD (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013
69

Nonlinear Modeling and Feedback Control of Drug Delivery in Anesthesia

Silva, Margarida M. January 2014 (has links)
General anesthesia is a drug-induced reversible state where neuromuscular blockade (NMB), hypnosis, and analgesia (jointly denoted by depth of anesthesia - DoA) are guaranteed. This thesis concerns mathematical modeling and feedback control of the effect of the muscle relaxants atracurium and rocuronium, the hypnotic propofol, and the analgesic remifentanil. It is motivated by the need to reduce incidences of awareness and overdose-related post-operative complications that occur in standard clinical practice. A major challenge for identification in closed-loop is the poor excitation provided by the feedback signal. This applies to the case of drugs administered in closed-loop. As a result, the standard models for the effect of anesthetics appear to be over-parameterized. This deteriorates the result of system identification and prevents individualized control. In the first part of the thesis, minimally parameterized models for the single-input single-output NMB and the multiple-input single-output DoA are developed, using real data. The models have a nonlinear Wiener structure: linear time-invariant dynamics cascaded with a static nonlinearity. The proposed models are shown to improve identifiability as compared to the standard ones. The second part of the thesis presents system identification methods for Wiener systems: a batch prediction error method, and two recursive techniques, one based on the extended Kalman filter, and another based on the particle filter. Algorithms are given for both the NMB and the DoA using the minimally parameterized models. Nonlinear adaptive controllers are proposed in the third part of the thesis. Using the model parameter estimates from the extended Kalman filter, the controller performs an online inversion of the Wiener nonlinearity. A pole-placement controller or a linear quadratic Gaussian controller is used for the linearized system. Results show good reference tracking performance both in simulation and in real trials. Relating to patient safety, the existence of undesirable sustained oscillations as consequence of Andronov-Hopf bifurcations for a NMB PID-controlled system is analyzed. Essentially the same bifurcations are observed in the standard and the minimally parameterized models, confirming the ability of the latter to predict the nonlinear behavior of the closed-loop system. Methods to design oscillation-free controllers are outlined.
70

Using Pharmacokinetic and Pharmacodynamic Principles to Evaluate Individualisation of Antibiotic Dosing – Emphasis on Cefuroxime

Viberg, Anders January 2006 (has links)
Cefuroxime is a renally eliminated antibiotic used against a variety of different bacterial infections. The pharmacokinetics (PK) for cefuroxime was studied in 97 hospitalized patients using population analysis. To be able to measure cefuroxime in human serum a new sensitive analytical method was developed using mass spectrometry detection. The method was validated and shown to be sensitive and selective. Cystatin C was found to be a better covariate for cefuroxime clearance compared to the traditionally used creatinine clearance (CLcr). This relation might be useful when designing dosing strategies for cefuroxime and other renally eliminated drugs. The time-courses of the biomarkers C-reactive protein (CRP), serum amyloid A (SAA), interleukin-6 (IL-6) and body temperature were studied for the first 72 hours of cefuroxime treatment and was related to the duration of illness previous treatment with cefuroxime and to time to step-down of treatment. When duration of illness was short, CRP and SAA were showed increasing levels. None of the biomarkers could be used to differentiate between early or late step-down of therapy. By use of known PK and pharmacodynamic (PD) principles, dosing strategies based on CLcr for cefuroxime were estimated using minimization of a risk function. The risk function was constructed with the aim to expose patients to cefuroxime concentration above minimum inhibitory concentration (MIC) for 50 % of the dosing interval and to minimize the amount of drug administered in excess to reach the aim. Based on evaluation using wild type MIC distributions for Escherichia coli and Streptococcus pneumoniae improved dosing strategies were selected. In vitro experiments were performed exposing Streptococcus pyogenes to constant concentration of benzylpenicillin, cefuroxime, erythromycin, moxifloxacin or vancomycin. A semi-mechanistic PK/PD model characterizing the time-course of the antibacterial effect was developed using all data simultaneously. Internal validation showed the model being predictive and robust.

Page generated in 0.0371 seconds