Spelling suggestions: "subject:"phasenfeldansatz"" "subject:"lernfeldansatz""
1 |
Optimal control of a semi-discrete Cahn–Hilliard–Navier–Stokes system with variable fluid densitiesKeil, Tobias 29 October 2021 (has links)
Die vorliegende Doktorarbeit befasst sich mit der optimalen Steuerung von einem Cahn–Hilliard–Navier–Stokes-System mit variablen Flüssigkeitsdichten. Dabei konzentriert sie sich auf das Doppelhindernispotential, was zu einem optimalen Steuerungsproblem einer Gruppe von gekoppelten Systemen, welche eine Variationsungleichung vierter Ordnung sowie eine Navier–Stokes-Gleichung beinhalten, führt. Eine geeignete Zeitdiskretisierung wird präsentiert und zugehörige Energieabschätzungen werden bewiesen. Die Existenz von Lösungen zum primalen System und von optimalen Steuerungen für das ursprüngliche Problem sowie für eine Gruppe von regularisierten Problemen wird etabliert. Die Optimalitätsbedingungen erster Ordnung für die regularisierten Probleme werden hergeleitet. Mittels eines Grenzübergangs in Bezug auf den Regularisierungsparameter werden Stationaritätsbedingungen für das ursprüngliche Problem etabliert, welche einer Form von C-Stationarität im Funktionenraum entsprechen.
Weiterhin wird ein numerischer Lösungsalgorithmus für das Steuerungsproblem basierend auf einer Strafmethode entwickelt, welche die Moreau–Yosida-artigen Approximationen des Doppelhindernispotentials einschließt. In diesem Zusammenhang wird ein dual-gewichteter Residuenansatz für zielorientierte adaptive finite Elemente präsentiert, welcher auf dem Konzept der C-Stationarität beruht. Die numerische Realisierung des adaptiven Konzepts und entsprechende numerische Testergebnisse werden beschrieben.
Die Lipschitzstetigkeit des Steuerungs-Zustandsoperators des zugehörigen instantanen Steuerungsproblems wird bewiesen und dessen Richtungsableitung wird charakterisiert. Starke Stationaritätsbedingungen für dieses Problem werden durch die Anwendung einer Technick von Mignot und Puel hergeleitet. Basierend auf der primalen Form der Bouligard-Ableitung wird ein impliziter numerischer Löser entwickelt, dessen Implentierung erläutert und anhand von numerischen Resultaten illustriert wird. / This thesis is concerned with the optimal control of a Cahn–Hilliard–Navier–Stokes system with variable fluid densities. It focuses on the double-obstacle potential, which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the Navier–Stokes equation. A suitable time-discretization is presented and associated energy estimates are proven. The existence of solutions to the primal system and of optimal controls is established for the original problem as well as for a family of regularized problems. The consistency of these approximations is shown and first order optimality conditions for the regularized problems are derived. Through a limit process with respect to the regularization parameter, a stationarity system for the original problem is established, which corresponds to a function space version of ε-almost C-stationarity.
Moreover, a numerical solution algorithm for the optimal control problem is developed based on a penalization method involving the Moreau–Yosida type approximations of the double-obstacle potential. A dual-weighted residual approach for goal-oriented adaptive finite elements is presented, which is based on the concept of C-stationarity. The overall error representation depends on dual weighted primal residuals and vice versa, supplemented by additional terms corresponding to the complementarity mismatch. The numerical realization of the adaptive concept is described and a report on numerical tests is provided.
The Lipschitz continuity of the control-to-state operator of the corresponding instantaneous control problem is verified and its directional derivative is characterized. Strong stationarity conditions for the instantaneous control problem are derived. Utilizing the primal notion of B-differentiability, a bundle-free implicit programming method is developed. Details on the numerical implementation are given and numerical results are included.
|
Page generated in 0.0538 seconds