• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 12
  • 12
  • 8
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exact and non-smooth control of quantum spin systems / Exakte und nicht-glatte Kontrolle von Quanten-Spin-Systemen

Ciaramella, Gabriele January 2015 (has links) (PDF)
An efficient and accurate computational framework for solving control problems governed by quantum spin systems is presented. Spin systems are extremely important in modern quantum technologies such as nuclear magnetic resonance spectroscopy, quantum imaging and quantum computing. In these applications, two classes of quantum control problems arise: optimal control problems and exact-controllability problems, with a bilinear con- trol structure. These models correspond to the Schrödinger-Pauli equation, describing the time evolution of a spinor, and the Liouville-von Neumann master equation, describing the time evolution of a spinor and a density operator. This thesis focuses on quantum control problems governed by these models. An appropriate definition of the optimiza- tion objectives and of the admissible set of control functions allows to construct controls with specific properties. These properties are in general required by the physics and the technologies involved in quantum control applications. A main purpose of this work is to address non-differentiable quantum control problems. For this reason, a computational framework is developed to address optimal-control prob- lems, with possibly L1 -penalization term in the cost-functional, and exact-controllability problems. In both cases the set of admissible control functions is a subset of a Hilbert space. The bilinear control structure of the quantum model, the L1 -penalization term and the control constraints generate high non-linearities that make difficult to solve and analyse the corresponding control problems. The first part of this thesis focuses on the physical description of the spin of particles and of the magnetic resonance phenomenon. Afterwards, the controlled Schrödinger- Pauli equation and the Liouville-von Neumann master equation are discussed. These equations, like many other controlled quantum models, can be represented by dynamical systems with a bilinear control structure. In the second part of this thesis, theoretical investigations of optimal control problems, with a possible L1 -penalization term in the objective and control constraints, are consid- ered. In particular, existence of solutions, optimality conditions, and regularity properties of the optimal controls are discussed. In order to solve these optimal control problems, semi-smooth Newton methods are developed and proved to be superlinear convergent. The main difficulty in the implementation of a Newton method for optimal control prob- lems comes from the dimension of the Jacobian operator. In a discrete form, the Jacobian is a very large matrix, and this fact makes its construction infeasible from a practical point of view. For this reason, the focus of this work is on inexact Krylov-Newton methods, that combine the Newton method with Krylov iterative solvers for linear systems, and allows to avoid the construction of the discrete Jacobian. In the third part of this thesis, two methodologies for the exact-controllability of quan- tum spin systems are presented. The first method consists of a continuation technique, while the second method is based on a particular reformulation of the exact-control prob- lem. Both these methodologies address minimum L2 -norm exact-controllability problems. In the fourth part, the thesis focuses on the numerical analysis of quantum con- trol problems. In particular, the modified Crank-Nicolson scheme as an adequate time discretization of the Schrödinger equation is discussed, the first-discretize-then-optimize strategy is used to obtain a discrete reduced gradient formula for the differentiable part of the optimization objective, and implementation details and globalization strategies to guarantee an adequate numerical behaviour of semi-smooth Newton methods are treated. In the last part of this work, several numerical experiments are performed to vali- date the theoretical results and demonstrate the ability of the proposed computational framework to solve quantum spin control problems. / Effiziente und genaue Methoden zum Lösen von Kontrollproblemen, die durch Quantum- Spin-Systemen gesteuert werden, werden vorgestellt. Spin-Systeme sind in moderner Quantentechnologie wie Kernspinresonanzspektroskopie, Quantenbildgebung und Quan- tencomputern äußerst wichtig. In diesen Anwendungen treten zwei Arten von Quan- tenkontrollproblemen auf: Optimalsteuerungsprobleme und Exaktsteuerungsprobleme beide mit einer bilinearen Kontrollstruktur. Diese Modelle entsprechen der Schrödinger- Pauli-Gleichung, die die Zeitentwicklung eines Spinors beschreibt, und der Liouville-von- Neumann-Mastergleichung, die die Zeitentwicklung eines Spinors und eines Dichteoper- ators beschreibt. Diese Arbeit konzentriert sich auf Quantenkontrollprobleme, die durch diese Modelle beschrieben werden. Eine entsprechende Definition des Optimierungsziels und der zulässigen Menge von Kontrollfunktionen erlaubt die Konstruktion von Steuerun- gen mit speziellen Eigenschaften. Diese Eigenschaften werden im Allgemeinen von der Physik und der in Quantenkontrolle verwendeten Technologie gefordert. Ein Hauptziel diser Arbeit ist die Untersuchung nicht-differenzierbarer Quantenkon- trollprobleme. Deshalb werden Rechenmethoden entwickelt um Optimalsteuerungsprob- lemen, die einen L1-Term im Kostenfunktional enthalten, und Exaktsteuerungsprobleme zu lösen. In beiden Fällen ist die zulässige Menge ein Teilraum eines Hilbertraumes. Die bilineare Kontrollstruktur des Quantenmodells, der L1-Kostenterm und die Nebenbedin- gungen der Kontrolle erzeugen starke Nichtlinearitäten, die die Lösung und Analyse der entsprechenden Problemen schwierig gestalten. Der erste Teil der Disseration konzentriert sich auf die physikalische Beschreibung des Spins von Teilchen und Phänomenen magnetischer Resonanz. Anschließend wird die kon- trollierte Schrödinger-Pauli-Gleichung und die Liouville-von-Neumann-Mastergleichung diskutiert. Diese Gleichungen können ebenso wie viele andere kontrollierte Quantenmod- elle durch ein dynamisches System mit biliniearer Kontrollstruktur dargestellt werden. Im zweiten Teil der Arbeit wird eine theoretische Untersuchung der Optimalsteuer- ungsprobleme, die einen L1-Kostenterm und Einschränkungen der Kontrolle enthalten können, durchgeführt. Insbesondere wird die Existenz von Lösungen und Optimalitäts- bedingungen und die Regularität der optimalen Kontrolle diskutiert. Um diese Optimal- steuerungsprobleme zu lösen werden halbglatte Newtonverfahren entwickelt und ihre su- perlineare Konvergenz bewiesen. Die Hauptschwierigkeit bei der Implementierung eines Newtonverfahrens für Optimalsteuerungsprobleme ist die Dimension des Jacobiopera- tors. In einer diskreten Form ist der Jacobioperator eine sehr große Matrix, war die Konstruktion in der Praxis undurchführbar macht. Daher konzentriert sich diese Ar- beit auf inexakte Krylov-Newton-Verfahren, die Newtonverfahren mit iterativen Krylov- Lösern für lineare Gleichungssysteme kombinieren, was die Konstruktion der diskreten Jacobimatrix erübrigt. Im dritten Teil der Disseration werden zwei Methoden für die Lösung von exakte Steuerbarkeit Problemen für Quanten-Spin-Systemen vorgestellt. Die erste Methode ist eine Fortsetzungstechnik während die zweite Methode auf einer bestimmten Refor- mulierung des exakten Kontrollproblems basiert. Beide Verfahren widmen sich L2-Norm exakten Steuerbarkeitsproblemen. Im vierten Teil die Disseration konzentriert sich auf die numerische Analyse von Quan- tenkontrollproblemen. Insbesondere wird das modifizierte Crank-Nicolson-Verfahren als eine geeignete Zeitdiskretisierung der Schrödingergleichung diskutiert. Es wird erst diskretisiert und nachfolgend optimiert, um den diskreten reduzierten Gradienten für den differenzierbaren Teil des Optimierungsziels zu erhalten. Die Details der Implemen- tierung und der Globalisierungsstrategie, die angemessenes numerisches Verhalten der halbglatten Newtonverfahren garantiert, werden behandelt. Im letzten Teil dieser Arbeit werden verschiedene numerische Experimente durchge- führt um die theoretischen Ergebnisse zu validieren und die Fähigkeiten de vorgeschla- genen Lösungsstrategie für Quanten-Spin-Kontrollproblemen zu validieren.
2

Mathematical programs with vanishing constraints

Hoheisel, Tim. Unknown Date (has links) (PDF)
Univ., Diss., 2009--Würzburg.
3

Primal and Dual Gap Functions for Generalized Nash Equilibrium Problems and Quasi-Variational Inequalities / Primale und duale Gap-Funktionen für verallgemeinerte Nash-Gleichgewichtsprobleme und Quasi-Variationsungleichungen

Harms, Nadja January 2014 (has links) (PDF)
In this thesis we study smoothness properties of primal and dual gap functions for generalized Nash equilibrium problems (GNEPs) and finite-dimensional quasi-variational inequalities (QVIs). These gap functions are optimal value functions of primal and dual reformulations of a corresponding GNEP or QVI as a constrained or unconstrained optimization problem. Depending on the problem type, the primal reformulation uses regularized Nikaido-Isoda or regularized gap function approaches. For player convex GNEPs and QVIs of the so-called generalized `moving set' type the respective primal gap functions are continuously differentiable. In general, however, these primal gap functions are nonsmooth for both problems. Hence, we investigate their continuity and differentiability properties under suitable assumptions. Here, our main result states that, apart from special cases, all locally minimal points of the primal reformulations are points of differentiability of the corresponding primal gap function. Furthermore, we develop dual gap functions for a class of GNEPs and QVIs and ensuing unconstrained optimization reformulations of these problems based on an idea by Dietrich (``A smooth dual gap function solution to a class of quasivariational inequalities'', Journal of Mathematical Analysis and Applications 235, 1999, pp. 380--393). For this purpose we rewrite the primal gap functions as a difference of two strongly convex functions and employ the Toland-Singer duality theory. The resulting dual gap functions are continuously differentiable and, under suitable assumptions, have piecewise smooth gradients. Our theoretical analysis is complemented by numerical experiments. The solution methods employed make use of the first-order information established by the aforementioned theoretical investigations. / In dieser Dissertation wurden die Glattheitseigenschaften von primalen und dualen Gap-Funktionen für verallgemeinerte Nash-Gleichgewichtsprobleme (GNEPs) und Quasi-Variationsungleichungen (QVIs) untersucht. Diese Gap-Funktionen sind Optimalwertfunktionen von primalen und dualen Umformulierungen eines GNEPs oder QVIs als restringiertes oder unrestringiertes Optimierungsproblem. Für gewisse Teilklassen von GNEPs (Spezialfall von `player convex' GNEPs) und QVIs (`generalized moving set case') sind diese primalen Gap-Funktionen überall stetig differenzierbar, für allgemeine GNEPs und QVIs jedoch nicht. Weitere Untersuchungen der Stetigkeit und Differenzierbarkeit ergaben, dass die primalen Gap-Funktionen unter geeigneten Bedingungen, abgesehen von Sonderfällen, in allen lokalen Minima der entsprechenden primalen Umformulierung differenzierbar sind. In dieser Dissertation wurden außerdem duale Gap-Funktionen für bestimmte Klassen von GNEPs und QVIs entwickelt, indem die primalen Gap-Funktionen basierend auf einer Idee von Dietrich (H. Dietrich: A smooth dual gap function solution to a class of quasivariational inequalities. Journal of Mathematical Analysis and Applications 235, 1999, pp. 380--393) als Differenz zweier gleichmäßig konvexer Funktionen dargestellt wurden und auf diese beiden Funktionen die Toland-Singer-Dualitätstheorie angewendet wurde. Es stellte sich heraus, dass diese dualen Gap-Funktionen stetig differenzierbar sind und unter geeigneten Bedingungen sogar stückweise stetig differenzierbare Gradienten besitzen. Die Ergebnisse in dieser Dissertation wurden durch numerische Berechnungen für diverse Testprobleme mittels bekannter Optimierungsverfahren erster Ordnung unterstützt.
4

Nichtglatte Analysis und Numerik von Eigenwerten zur Designoptimierung mechanischer Strukturen

Moritzen, Kay January 2006 (has links)
Zugl.: Dortmund, Univ., Diss., 2006
5

Mathematical Programs with Vanishing Constraints / Optimierungsprobleme mit \'vanishing constraints\'

Hoheisel, Tim January 2009 (has links) (PDF)
A new class of optimization problems name 'mathematical programs with vanishing constraints (MPVCs)' is considered. MPVCs are on the one hand very challenging from a theoretical viewpoint, since standard constraint qualifications such as LICQ, MFCQ, or ACQ are most often violated, and hence, the Karush-Kuhn-Tucker conditions do not provide necessary optimality conditions off-hand. Thus, new CQs and the corresponding optimality conditions are investigated. On the other hand, MPVCs have important applications, e.g., in the field of topology optimization. Therefore, numerical algorithms for the solution of MPVCs are designed, investigated and tested for certain problems from truss-topology-optimization.
6

Globally Convergent Algorithms for the Solution of Generalized Nash Equilibrium Problems / Global konvergente Algorithmen zur Lösung von verallgemeinerten Nash-Gleichgewichtsproblemen

Dreves, Axel January 2011 (has links) (PDF)
Es werden verschiedene Verfahren zur Lösung verallgemeinerter Nash-Gleichgewichtsprobleme mit dem Schwerpunkt auf deren globaler Konvergenz entwickelt. Ein globalisiertes Newton-Verfahren zur Berechnung normalisierter Lösungen, ein nichtglattes Optimierungsverfahren basierend auf einer unrestringierten Umformulierung des spieltheoretischen Problems, und ein Minimierungsansatz sowei eine Innere-Punkte-Methode zur Lösung der gemeinsamen Karush-Kuhn-Tucker-Bedingungen der Spieler werden theoretisch untersucht und numerisch getestet. Insbesondere das Innere-Punkte Verfahren erweist sich als das zur Zeit wohl beste Verfahren zur Lösung verallgemeinerter Nash-Gleichgewichtsprobleme. / In this thesis different algorithms for the solution of generalized Nash equilibrium problems with the focus on global convergence properties are developed. A globalized Newton method for the computation of normalized solutions, a nonsmooth algorithm based on an optimization reformulation of the game-theoretic problem, and a merit function approach and an interior point method for the solution of the concatenated Karush-Kuhn-Tucker-system are analyzed theoretically and numerically. The interior point method turns out to be one of the best existing methods for the solution of generalized Nash equilibrium problems.
7

On minimal pairs of compact convex sets and of convex functions /

Kassa, Semu Mitiku. January 2002 (has links)
Thesis (doctoral)--Universität Karlsruhe, 2002.
8

Eine spezielle Klasse von Zwei-Ebenen-Optimierungsaufgaben

Lohse, Sebastian 17 March 2011 (has links) (PDF)
In der Dissertation werden Zwei-Ebenen-Optimierungsaufgaben mit spezieller Struktur untersucht. Von Interesse sind hierbei für den sogenannten pessimistischen Lösungszugang Existenzresultate für Lösungen, die Eckpunkteigenschaft einer Lösung, eine Regularisierungstechnik, Optimalitätsbedingungen sowie für den linearen Fall ein Verfahren zur Bestimmung einer global pessimistischen Lösung. Beim optimistischen Lösungszugang wird zunächst eine Verallgemeinerung des Lösungsbegriffes angegeben. Anschließend finden sich Betrachtungen zur Komplexität des Problems, zu Optimalitätsbedingungen sowie ein Abstiegs- und Branch&Bound-Verfahren für den linearen Fall wieder. Den Abschluss der Arbeit bilden ein Anwendungsbeispiel und numerische Testrechnungen.
9

A Nonsmooth Nonconvex Descent Algorithm

Mankau, Jan Peter 17 January 2017 (has links) (PDF)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions. In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions. In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm. We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions. The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction. The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.
10

A Nonsmooth Nonconvex Descent Algorithm

Mankau, Jan Peter 09 December 2016 (has links)
In many applications nonsmooth nonconvex energy functions, which are Lipschitz continuous, appear quite naturally. Contact mechanics with friction is a classic example. A second example is the 1-Laplace operator and its eigenfunctions. In this work we will give an algorithm such that for every locally Lipschitz continuous function f and every sequence produced by this algorithm it holds that every accumulation point of the sequence is a critical point of f in the sense of Clarke. Here f is defined on a reflexive Banach space X, such that X and its dual space X' are strictly convex and Clarkson's inequalities hold. (E.g. Sobolev spaces and every closed subspace equipped with the Sobolev norm satisfy these assumptions for p>1.) This algorithm is designed primarily to solve variational problems or their high dimensional discretizations, but can be applied to a variety of locally Lipschitz functions. In elastic contact mechanics the strain energy is often smooth and nonconvex on a suitable domain, while the contact and the friction energy are nonsmooth and have a support on a subspace which has a substantially smaller dimension than the strain energy, since all points in the interior of the bodies only have effect on the strain energy. For such elastic contact problems we suggest a specialization of our algorithm, which treats the smooth part with Newton like methods. In the case that the gradient of the entire energy function is semismooth close to the minimizer, we can even prove superlinear convergence of this specialization of our algorithm. We test the algorithm and its specialization with a couple of benchmark problems. Moreover, we apply the algorithm to the 1-Laplace minimization problem restricted to finitely dimensional subspaces of piecewise affine, continuous functions. The algorithm developed here uses ideas of the bundle trust region method by Schramm, and a new generalization of the concept of gradients on a set. The basic idea behind this gradients on sets is that we want to find a stable descent direction, which is a descent direction on an entire neighborhood of an iteration point. This way we avoid oscillations of the gradients and very small descent steps (in the smooth and in the nonsmooth case). It turns out, that the norm smallest element of the gradient on a set provides a stable descent direction. The algorithm we present here is the first algorithm which can treat locally Lipschitz continuous functions in this generality, up to our knowledge. In particular, large finitely dimensional Banach spaces haven't been studied for nonsmooth nonconvex functions so far. We will show that the algorithm is very robust and often faster than common algorithms. Furthermore, we will see that with this algorithm it is possible to compute reliably the first eigenfunctions of the 1-Laplace operator up to disretization errors, for the first time. / In vielen Anwendungen tauchen nichtglatte, nichtkonvexe, Lipschitz-stetige Energie Funktionen in natuerlicher Weise auf. Ein klassische Beispiel bildet die Kontaktmechanik mit Reibung. Ein weiteres Beispiel ist der $1$-Laplace Operator und seine Eigenfunktionen. In dieser Dissertation werden wir ein Abstiegsverfahren angeben, so dass fuer jede lokal Lipschitz-stetige Funktion f jeder Haeufungspunkt einer durch dieses Verfahren erzeugten Folge ein kritischer Punkt von f im Sinne von Clarke ist. Hier ist f auf einem einem reflexiver, strikt konvexem Banachraum definierert, fuer den der Dualraum ebenfalls strikt konvex ist und die Clarkeson Ungleichungen gelten. (Z.B. Sobolevraeume und jeder abgeschlossene Unterraum mit der Sobolevnorm versehen, erfuellt diese Bedingung fuer p>1.) Dieser Algorithmus ist primaer entwickelt worden um Variationsprobleme, bzw. deren hochdimensionalen Diskretisierungen zu loesen. Er kann aber auch fuer eine Vielzahl anderer lokal Lipschitz stetige Funktionen eingesetzt werden. In der elastischen Kontaktmechanik ist die Spannungsenergie oft glatt und nichtkonvex auf einem geeignetem Definitionsbereich, waehrend der Kontakt und die Reibung durch nicht glatte Funktionen modelliert werden, deren Traeger ein Unterraum mit wesentlich kleineren Dimension ist, da alle Punkte im Inneren des Koerpers nur die Spannungsenergie beeinflussen. Fuer solche elastischen Kontaktprobleme schlagen wir eine Spezialisierung unseres Algorithmuses vor, der den glatten Teil mit Newton aehnlichen Methoden behandelt. Falls der Gradient der gesamten Energiefunktion semiglatt in der Naehe der Minimalstelle ist, koennen wir sogar beweisen, dass der Algorithmus superlinear konvergiert. Wir testen den Algorithmus und seine Spezialisierung an mehreren Benchmark Problemen. Ausserdem wenden wir den Algorithmus auf 1-Laplace Minimierungsproblem eingeschraenkt auf eine endlich dimensionalen Unterraum der stueckweise affinen, stetigen Funktionen an. Der hier entwickelte Algorithmus verwendet Ideen des Bundle-Trust-Region-Verfahrens von Schramm, und einen neu entwickelten Verallgemeinerung von Gradienten auf Mengen. Die zentrale Idee hinter den Gradienten auf Mengen ist die, dass wir stabile Abstiegsrichtungen auf einer ganzen Umgebung der Iterationspunkte finden wollen. Auf diese Weise vermeiden wir das Oszillieren der Gradienten und sehr kleine Abstiegsschritte (im glatten, wie im nichtglatten Fall.) Es stellt sich heraus, dass das normkleinste Element dieses Gradienten auf der Umgebung eine stabil Abstiegsrichtung bestimmt. So weit es uns bekannt ist, koennen die hier entwickelten Algorithmen zum ersten Mal lokal Lipschitz-stetige Funktionen in dieser Allgemeinheit behandeln. Insbesondere wurden nichtglatte, nichtkonvexe Funktionen auf derart hochdimensionale Banachraeume bis jetzt nicht behandelt. Wir werden zeigen, dass unser Algorithmus sehr robust und oft schneller als uebliche Algorithmen ist. Des Weiteren, werden wir sehen, dass es mit diesem Algorithmus das erste mal moeglich ist, zuverlaessig die erste Eigenfunktion des 1-Laplace Operators bis auf Diskretisierungsfehler zu bestimmen.

Page generated in 0.0905 seconds