• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electronic and Optical Properties of Silicon Nanowires: Theory and Modeling

Shiri, Daryoush 10 1900 (has links)
Narrow silicon nanowires host a rich set of physical phenomena. Understanding these phenomena will open new opportunities for applications of silicon nanowires in optoelectronic devices and adds more functionality to silicon especially in those realms that bulk silicon may not operate remarkably. Compatibility of silicon nanowires with the mainstream fabrication technology is also advantageous. The main theme of this thesis is finding the possibility of using silicon nanowires in light sources; laser and light emitting diodes. Using Tight Binding (TB) and ab-initio Density Functional Theory (DFT) methods it was shown that axial strain can induce significant changes in the effective mass, density of states and bandgap of silicon nanowires. Generality of the observed effects was proven by investigating nanowires of different crystallography, diameter and material (e.g. germanium nanowires). The observed direct to indirect bandgap conversion suggests that strain is able to modulate the light emission properties of silicon nanowires. To investigate this possibility, spontaneous emission time was formulated using perturbation theory including Longitudinal Optical (LO) and Acoustic (LA) phonons. It was observed that corresponding to bandgap conversion, the spontaneous emission time can be modulated by more than one order of magnitude. This emanates from bandgap conversion and symmetry change of wave function in response to strain. A mechanism for population inversion was proposed in the thesis which is based on the Ensemble Monte Carlo (EMC) study of carrier statistics in direct and indirect conduction sub bands. By calculating all possible electron-phonon scattering mechanisms which may deplete the already populated indirect subband, it was shown that at different temperatures and under different electric fields there is a factor of 10 difference between the population of indirect and direct sub bands. This suggests that population inversion can be achieved by biasing an already strained nanowire in its indirect bandgap state. The light emission is possible then by releasing or inverting the strain direction. A few ideas of implementing this experiment were proposed as a patent application. Furthermore the photo absorption of silicon nanowires was calculated using TB method and the role of diameter, optical anisotropy and strain were investigated on band-edge absorption.
12

Transport and thermodynamic studies of the superconductors A3T4Sn13 and YFe2Ge2

Chen, Xiaoye January 2017 (has links)
Materials in proximity to quantum critical points (QCPs) experience strong fluctuations in the order parameter associated with the transition and often, as a result, display interesting properties. In this dissertation, we have used a variety of experimental probes such as Shubnikov-de Haas quantum oscillations, thermal conductivity and heat capacity, to better understand two such materials — $A_3T_4$Sn$_{13}$ and YFe$_2$Ge$_2$. $A_3T_4$Sn$_{13}$ ($A$ = Ca, Sr; $T$ = Ir, Rh) is a family of quasi-skutterudite superconductors with moderate $T_c$’s between 4 and 8 K. Although the superconductivity is believed to be phonon-mediated with s-wave pairing symmetry, an unusual second-order structural transition makes this material family fascinating to study. Whether this structural transition is a result of three distortions with perpendicular wavevectors resulting in a cubic-to-cubic transformation, or each wavevector acting independently giving rise to cubic-to-tetragonal transformations and formation of twinned domains is a disputed issue. We have measured quantum oscillations in the resistivity of Sr3Ir4Sn13 and compared it to density functional theory (DFT) calculations for both scenarios. Our results strongly suggest that the former interpretation is correct. The structural transition temperature $T^*$ in $A_3T_4$Sn$_{13}$ can be suppressed to zero by tuning with physical or chemical pressure. In (Ca$_x$Sr$_{1−x}$)$_3$Rh$_4$Sn$_13$, the quantum critical point can be accessed purely by chemical substitution at x ~ 0.9. In the vicinity of the QCP, we expect large fluctuations of the order parameter at low temperatures, which for a structural transition could manifest as a structural disorder. We have measured thermal conductivity at temperatures much lower than $T_c$ and found that it is well described by a single power law with suppressed exponents near the QCP. The heat capacity, however, remains ~ $T^3$. After excluding conventional phonon scattering mechanisms, we propose the possibility of intrinsic quasi-static spatial disorder that is related to the structural QCP. YFe$_2$Ge$_2$ is closely linked to the “122” family of iron-based superconductors like KFe$_2$As$_2$, although it has a significantly lower $T_c$ ~ 1 K. It has a rather three-dimensional Fermi surface which closely resembles that of KFe$_2$As$_2$ in the pressure-induced collapsed tetragonal phase. YFe$_2$Ge$_2$ is in proximity to several types of magnetic order which are predicted by DFT calculations to have lower energy than the non-spin polarised case. Even though YFe$_2$Ge$_2$ is non-magnetic, its superconductivity could be strongly affected by magnetic fluctuations. Through a collaboration with researchers at the University of Waterloo, we have measured the thermal conductivity of YFe$_2$Ge$_2$ down to millikelvin temperatures and up to 2.5 T in field. Our results suggest that YFe$_2$Ge$_2$ is a nodal superconductor. This result could assist in the explanation of the unconventional superconductivity in iron-based superconductors.
13

Modélisation du transport quantique de transistors double-grille : influence de la contrainte, du matériau et de la diffusion par les phonons / Quantum transport modeling of double­gate transistors : influence of strain, material and phonon scattering

Moussavou, Manel 19 October 2017 (has links)
Le transistor est la brique élémentaire des circuits intégrés présents dans tous les appareils électroniques. Années après années l’industrie de la microélectronique a amélioré les performances des circuits intégrés (rapidité, consommation énergétique) en réduisant les dimensions du transistor. De nos jours, en plus de la réduction de la taille du transistor d’autres techniques permettent de soutenir cette croissance: ce sont les « booster » technologiques. Les contraintes mécaniques ou encore le remplacement du Silicium par d’autres matériaux tels que germanium (Ge) et les matériaux semi-conducteurs de type III-V sont des exemples de booster technologiques. Grâce à la modélisation numérique, cette thèse propose d’étudier les effets de booster technologiques sur les performances électriques de la future génération de transistors. / The transistor is the elementary brick of Integrated circuits found in all electronic devices. Years after years the microelectronic industry has enhanced the performances of integrated circuits (speed and energy consumption) by downscaling the transistor. Nowadays besides the transistor’s downscaling, other techniques have been considered to maintain this growth: they are called technological boosters. Mechanical strain or new material, such as germanium (Ge) and III-V semiconductors, to replace Silicon are example of technological boosters. By the means of numerical quantum simulations and modeling, this these work propose a study of the effect of technological boosters on the electric performances of the next generation of transistors.
14

Mid-infrared quantum cascade lasers

Flores, Yuri Victorovich 10 June 2015 (has links)
Quantenkaskadenlaser (QCLs) wurden vor gerade zwanzig Jahren erfunden und haben seitdem stetig im weltweiten Markt der optoelektronischen Bauelemente für den Infrarot an Bedeutung gewonnen. Anwendungsbeispiele für aktuelle und potenzielle Einsatzgebiete von QCLs sind photoakustische Spektroskopie, Umweltüberwachung, Simulation von heißen Körpern, und optische Freiraumdatenübertragung. Rekord optische Leistungen von 14 W und Leistungseffizienzen zwischen 15-35 % wurden bei mittelinfraroten QCLs für Betriebstemperaturen zwischen 80-300 K erreicht. Die weitere Verbesserung dieser Eigenschaften hängt nicht nur von Aspekten wie Wärmemanagement und Chip-Packaging ab, sondern auch von Verbesserungen im Laserdesign zwecks der Reduzierung des Ladungsträgerleckstroms. Dennoch sind die verschiedenen Mechanismen und Komponenten des Leckstroms in Quantenkaskadenlasern leider noch nicht gründlich untersucht worden. Die vorliegende Arbeit liefert a realistische Beschreibung der Ladungsträgertransports in QCLs. Wir beschreiben u.a. Leckströme vom Quantentopf- in höhere Zustände und diskutieren elastische und inelastische Streumechanismen von Ladungsträgern bei mittelinfraroten Quantenkaskadenlasern. Wir illustrieren außerdem die Notwendigkeit zur Berücksichtigung der Elektronentemperatur für eine vollständigere Analyse der Ladungsträgertransporteigenschaften von Quantenkaskadenlasern. Methoden zur experimentellen Ermittlung des temperaturabhängigen Leckstroms in Quantenkaskadenlasern werden präsentiert. Unser Ansatz liefert eine Methode zur effektiven Analyse von der QCL-Leistung und Vereinfacht die Optimierung von QCL aktive Regionen. / Two decades after their invention in 1994, quantum-cascade lasers (QCLs) become increasingly important in the global infrared optoelectronics market. Photoacoustic spectroscopy, environment monitoring, hot object simulation, and free-space communication systems are selected examples of the current and potential applications of QCLs. Record optical powers as large as 14 W and power-conversion efficiencies ranging between 15-35 % have been reported for MIR QCLs for temperatures 80-300 K. Further improvement of these characteristics depends not only of aspects as heat management and chip-packaging, but also on improving the active-region design to reduce several leakage channels of charge carriers. However, mechanisms through which leakage of charge carriers affects QCLs performance have not been thoroughly researched. A better understanding of the several (non-radiative) scattering mechanisms involved in carrier transport in QCLs is needed to design new structures and optimize their performance. This work provides a realistic description of charge carriers transport in QCLs. We discuss in particular carrier leakage from QCL quantum-well confined states into higher and lower states. The two main mechanisms for non-radiative intersubband scattering in MIR QCLs are electron-longitudinal-optical-phonon scattering and interface roughness-induced scattering. We present methods for the experimental determination of the leakage current in QCLs at and above laser threshold, which allowed us to estimate the sheet distributions of conduction band states and better understand the impact of temperature activated leakage on QCLs characteristics. We found that even at temperatures low enough to neglect ELO scattering, carriers leakage due to IFR becomes significant for devices operating at high electron temperatures. Altogether, this approach offers a straightforward method to analyze and troubleshoot new QCL active region designs and optimize their performance.
15

Scattering-Rate Approach for Vertical Electron Transport in III-V Quantum Cascade Heterostructures

Kurlov, Sergii 25 July 2018 (has links)
Seit ihrer Erfindung in 1994 haben sich Quantenkaskadenlaser (QCL) zu der Standard-Halbleiterlaserquelle im mittleren und weiten Infrarotspektrum entwickelt. Diese unipolaren Laser basieren auf der Populations-Inversion zwischen quantisierten sub-Bändern in Halbleiterheterostrukturen. Ein gutes theoretisches Modell ist essenziell für die Optimierung und weitere Entwicklung von neuen QCL Laserquellen. Eine einfache Methode, Elektronentransport in QCL zu beschreiben, stützt sich auf ein phänomenologisches Modell für die Streuraten zwischen elektronischen sub-Bändern. Das Hauptziel dieser Arbeit ist die Entwicklung eines kompakten Ansatzes für Streuraten für die effiziente Vorhersage der temperaturabhängigen Charakteristika von QCLs im mittleren Infrarotspektrum. Die Arbeit beginnt mit einem kurzen Überblick über Halbleiterheterostrukturen und die wichtigsten Streumechanismen für Übergänge zwischen sub-Bändern in QCLs. Dabei sind elastische Übergänge sowie Phononenstreuung für die Übergangsraten zwischen verschiedenen sub-Bändern relevant. Außerdem werden die notwendigen Modellierungstechniken für Simulationsprozesse in QCLs mit einem selbst-konsistenten Streuraten-Modell vorgestellt. In dieser Arbeit wurde ein vereinfachtes Modell für vertikalen Elektronentransport zwischen sub-Bändern bei der Temperatur von Flüssigstickstoff entwickelt. Die Übergangsrate ist in diesem Ansatz das Produkt des Überlappintegrals der quadrierten Moduli der einhüllenden Funktion und einem phänomenologischen Faktor, der von der Übergangsenergie abhängt. Der Übergangsfaktor wird für verschiedene Übergangsmechanismen einzeln hergeleitet, und eine Erweiterung des Modells auf einen breiten Temperaturbereich wird vorgestellt. Schließlich analysieren wir die sogenannte T0-Charakteristik für einige Designs der aktiven Region, die aus Rechnungen mit vorhandenen temperaturabhängigen Modellen und experimentellen Daten gewonnen wurden. / Since their invention in 1994, quantum cascade lasers (QCLs) have become the standard semiconductor laser source for the mid- and far-infrared spectral range. These unipolar devices are based on the population inversion between quantized subbands in biased semiconductor heterostructures. A useful theoretical model is essential for the optimization and further development of new QCL sources. A simple method for describing the electron transport in QCL is based on scattering rates between electron subbands. These can be described easiest using a phenomenological model with experimental or empirical parameters. The main goal of this work is development of compact description of scattering processes in the frame of scattering-rate approach for the reliable prediction of temperature dependent characteristics of mid-infrared quantum cascade lasers. We start this work with a brief overview of semiconductor heterostructures and main intersubband scattering mechanisms for quantum cascade lasers. The resulting transition rates from initial states to another subbands are described by phonons and elastic scattering. Additionally, necessary modeling techniques are considered for simulation processes in QCLs using self-consistent scattering-rate model. Based on original work we introduce a simplified model for vertical electron transport between separated subbands at liquid nitrogen temperatures. In this approach the transition rate is written as the product of the overlap integral for the squared moduli of the envelope functions and a phenomenological factor that depends on the transition energy. The approach is reviewed and extended for a broad temperature range. There, the transition factor is derived and written for different scattering mechanisms separately. Then we analyze “so-called” T0 characteristic for a number of active region designs received from the calculations by present temperature dependent model and the experimental data.
16

Structural Characterization and Thermoelectric Performance of ZrNiSn Half-Heusler Compound Synthesized by Mechanical Alloying

Germond, Jeffrey 14 May 2010 (has links)
Thermoelectric (TE) ZrNiSn samples with a half-Heusler atomic structure were synthesized by mechanical alloying (MA) and consolidation by either Spark Plasma Sintering (SPS) or hot pressing (HP). X-Ray diffraction patterns of as milled powders and consolidated samples were compared and analyzed for phase purity. Thermal conductivity, electrical conductivity and Seebeck coefficient are measured as a function of temperature in the range 300 K to 800 K and compared with measurements reported for high temperature solid state reaction synthesis of this compound. HP samples, compared to SPS samples, demonstrate increased grain growth due to longer heating times. Reduced grain size achieved by MA and SPS causes increased phonon scattering due to the increased number of grain boundaries, which lowers the thermal conductivity without doping the base system with addition phonon scattering centers. Mechanical characterization of the samples by microindentation and depth sensing indentation for hardness and elastic modulus will be discussed.
17

Timing Jitter and Electron-Phonon Interaction in Superconducting Nanowire Single-Photon Detectors (SNSPDs)

Sidorova, Mariia 29 January 2021 (has links)
Die vorliegende Doktorarbeit beschäftigt sich mit der experimentellen Studie zweier miteinander verbundener Phänomene: Dem intrinsischen Timing-Jitter in einem supraleitendenden Nanodraht-Einzelphotonen-Detektor (SNSPD) und der Relaxation der Elektronenenergie in supraleitenden Filmen. Supraleitende Nanodrähte auf einem dielektrischen Substrat als mikroskopische Grundbausteine jeglicher SNSPDs stellen sowohl für theoretische als auch für experimentelle Studien komplexe Objekte dar. Die Komplexität ergibt sich aus der Tatsache, dass SNSPDs in der Praxis stark ungeordnete und ultradünne supraleitende Filme verwenden, die eine akustische Fehlanpassung zu dem zugrundeliegenden Substrat aufweisen und einen Nichtgleichgewichts-Zustand implizieren. Die Arbeit untersucht die Komplexität des am weitesten in der SNSPD Technologie verbreiteten Materials, Niobnitrid (NbN), indem verschiedene experimentelle Methoden angewandt werden. Als eine mögliche Anwendung der SNSPD-Technologie wird ein Prototyp eines dispersiven Raman-Spektrometers mit Einzelphotonen-Sensitivität demonstriert. / This Ph.D. thesis is based on the experimental study of two mutually interconnected phenomena: intrinsic timing jitter in superconducting nanowire single-photon detectors (SNSPDs) and relaxation of the electron energy in superconducting films. Microscopically, a building element of any SNSPD device, a superconducting nanowire on top of a dielectric substrate, represents a complex object for both experimental and theoretical studies. The complexity arises because, in practice, the SNSPD utilizes strongly disordered and ultrathin superconducting films, which acoustically mismatch with the underlying substrate, and implies a non-equilibrium state. This thesis addresses the complexity of the most conventional superconducting material used in SNSPD technology, niobium nitride (NbN), by applying several distinct experimental techniques. As an emerging application of the SNSPD technology, we demonstrate a prototype of the dispersive Raman spectrometer with single-photon sensitivity.
18

Impact of Nanoscale Defects on Thermal Transport in Materials

Chauhan, Vinay Singh January 2020 (has links)
No description available.
19

Carrier Mobility And High Field Transport in Modulation Doped p-Type Ge/Si1-xGex And n-Type Si/Si1-xGex Heterostructures

Madhavi, S 03 1900 (has links)
Modulation doped heterostructures have revolutionized the operation of field effect devices by increasing the speed of operation. One of the factors that affects the speed of operation of these devices is the mobility of the carriers, which is intrinsic to the material used. Mobility of electrons in silicon based devices has improved drastically over the years, reaching as high as 50.000cm2/Vs at 4.2K and 2600cm2/Vs at room temperature. However, the mobility of holes in p-type silicon devices still remains comparatively lesser than the electron mobility because of large effective masses and complicated valence band structure involved. Germanium is known to have the largest hole mobility of all the known semiconductors and is considered most suitable to fabricate high speed p-type devices. Moreover, it is also possible to integrate germanium and its alloy (Si1_zGex ) into the existing silicon technology. With the use of sophisticated growth techniques it has been possible to grow epitaxial layers of silicon and germanium on Si1_zGex alloy layers grown on silicon substrates. In tills thesis we investigate in detail the electrical properties of p-type germanium and n-type silicon thin films grown by these techniques. It is important to do a comparative study of transport in these two systems not only to understand the physics involved but also to study their compatibility in complementary field effect devices (cMODFET). The studies reported in this thesis lay emphasis both on the low and high field transport properties of these systems. We report experimental data for the maximum room temperature mobility of holes achieved m germanium thin films grown on Si1_zGex layers that is comparable to the mobility of electrons in silicon films. We also report experiments performed to study the high field degradation of carrier mobility due to "carrier heating" in these systems. We also report studies on the effect of lattice heating on mobility of carriers as a function of applied electric field. To understand the physics behind the observed phenomenon, we model our data based on the existing theories for low and high field transport. We report complete numerical calculations based on these theories to explain the observed qualitative difference in the transport properties of p-type germanium and ii-type silicon systems. The consistency between the experimental data and theoretical modeling reported in this work is very satisfactory.

Page generated in 0.1221 seconds