• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non invasive approach for the detection of human arterial blockages via photo acoustic modelling

Kakani, Monika 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This research focuses on the detection of arterial blockage due to LDL (low density lipoprotein). Arterial blockages are related to two kinds of fats LDL and the HDL. HDL being the good fat, the patient does not have to undergo the biopsy, while in case of LDL, biopsy should be performed. Issues associated with invasive approaches raise safety concerns for patients such as infection, longer operation durations, longer recovery time etc. This research focuses on a noninvasive imaging technique to detect the kind of block age. Photo acoustic approach was investigated in order to simulate human tissues leading to medical diagnosis and treatment. Photo acoustic imaging involves production of an image on absorption of laser pulses. The laser pulses are further scattered and absorbed producing heat. The goals of the study were to categorize the type of the tissue materials based on the output temperature distribution via IR sensors and reflected acoustic waves via acoustic pressure sensors. The reflected acoustic wave and IR thermal distribution may be applied towards arterial blockages to differentiate the different types of tissue layers. The simulation results should have implications towards the future implementation of the practical devices and system. Parameters including energy levels, tissue thicknesses, frequencies, penetration depth, and the densities of the LDL/HDL fat materials were considered. Various energy pulses; 1j, 3j, and 5j were considered as input sources to the tissue materials (single or multi layers). The simulated layers considered in the study were the skin, bone, blood, and fat cells. The temperature and acoustic pressure response over the various layers were analyzed for the detection of blockages. The ndings of the temperature and acoustic pressure ranges can be detected by MEMS/NEMS (Micro electro mechanical systems/ nano electro mechanical systems) sensors, such as IR and Piezoelectric devices. Bioheat and acoustic wave equations were solved simultaneously using COMSOL software for multiple layers. The proper boundary conditions were provided in the solutions of these equations. The scattering and transmission acoustic wave, and the temperature distributions, may be used as guide to the integrated sensor system design for future consideration. The simulation was performed in four stages: (1) Single layer and multiple layers at a given frequency and energy level (2) Multiple layers at a given frequency for different energy levels (3) Multiple layers at a given energy level for different frequency and (4) Multiple layers at a given frequency and energy levels with different size tissues. The simulation results showed that a range of acoustic pressure between 240 and 260 need to be detected, with a di erential temperature distribution in kelvin range. Power pulses of 10MPa showed a temperature change of 175, which is believed to be within the exible substrate sensing devices that may be used for the practical model of this research. The thesis covers a proposed system for the practical model following the simulation results received in this study.
2

Magneto-photo-acoustic imaging

Qu, Min 25 June 2012 (has links)
Cancer is a major public health problem worldwide due to its poor prognosis. Detection of cancer in the earliest stages is crucial for the success of therapeutic strategies to truly cure the disease. Molecular imaging provides the potential to diagnose and image cancers at an asymptomatic stage. In molecular imaging, the nanoparticles are designed to target the cancer cells. Molecular imaging is capable of assessing the molecular processes within the tumors by detecting the accumulated or targeted nanoparticles. However, for most molecular imaging systems, the background signal is a common problem, obscuring signals from specific probes and limiting sensitive detection. A hybrid imaging technique, entitled magneto-photo-acoustic (MPA) imaging, was developed as a non-invasive imaging tool to detect nanoparticles, which are used to target pathologies, with high sensitivity and specificity. Based on dual-contrast of both optical absorption and magnetic susceptibility, MPA imaging can significantly improve the molecular contrast specificity as well as investigate the interaction of nanoparticles with cells. Studies were performed using tissue-mimicking phantoms, ex vivo tissue sample and in vivo animal models of cancer. The results indicate that, coupled with dual-contrast agent, the molecular MPA imaging will allow not only mapping the pathologies located in the body, but also sensing the molecular and physiological processes. / text
3

Design and construction of a novel thermal interferometer

Kumar, Nishith January 2009 (has links)
Abstract not available.
4

Photo-/thermo-acoustic imaging and sensing for precision breast conserving surgery

Lan, Lu 30 August 2019 (has links)
Breast cancer is the No.1 prevalent new cancer in female cancer now. Compared to mastectomy (removing the entire breast), breast-conserving surgery (only removing cancerous tissue), has become the preferred treatment for its better cosmetic outcome and patient healthcare. However, it is challenging for surgeons to accurately locate the tumor and completely remove it during the surgery. Consequently, it leads to prolonged surgical time and inadequate tumor margins, which requires a second operation. Currently, the reoperation rate in the U.S. is as high as 25%. This is due to the lack of intraoperative tumor margin assessment and accurate breast tumor localization tools inside the operating room (OR), making current lumpectomy far from precise. My thesis work aims to achieve precision lumpectomy through development of photo- and thermo-acoustic imaging and sensing techniques. To fulfill the first unmet need of high-speed intraoperative assessment of breast tumor margins, we developed a compact multimodal ultrasound and bond-selective photoacoustic imaging system to image the entire excised tissue in just 10 minutes. The system was validated at hospitals with fresh lumpectomy specimens from 66 patients, and it achieved a sensitivity of 85.5% and specificity of 90%, showing its potential for high-speed and accurate intraoperative assessment of breast tumor margins. Next, we addressed the second unmet need of fast and accurate breast tumor localization in the OR through development of a fiber optoacoustic guide (FOG). It resembles the current metal guide wire but broadcasts MHz ultrasound omnidirectional via photoacoustic effect and can achieve sub-mm tumor localization. With an augmented reality system, the obtained tumor location was projected as an intuitive visual guidance to minimize the interference to surgical workflow and achieve optimal surgical planning. A surgeon successfully deployed the FOG to excise a “pseudo tumor” in a female human cadaver. Lastly, to improve the patient flow and logistics in clinics with a wireless breast tumor localization tool, we developed a resonant ring antenna that converts microwave into ultrasound to realize a wireless acoustic beacon. As a proof-of-concept, the ring antenna demonstrated over 3 orders of improvement in conversion efficiency than a common contrast agent for thermo-acoustic imaging. / 2021-08-30T00:00:00Z
5

Akcelerace fotoakustického snímkování / Acceleration of Photoacoustic Imaging

Nedeljković, Sava January 2020 (has links)
Hlavním cílem této práce je navrhnout novu metodu rekonstrukce obrazu z dat fotoakustického snímkování. Fotoakustické snímkování je velmi populární neinvazivní metoda snímkování založená na detekování ultrazvukových vln vyvolaných laserovým paprskem. Proces snímkování generuje velké množství dat, a kvůli tomu je proces rekonstrukce obrazu velmi časově náročný. Táto práce demonstruje proces rekonstrukce obrazu pomocí zpětné projekce, algoritmu který je dostatečně jednoduchý na přizpůsobení moderním architekturám procesorů umožňující různé způsoby optimalizovaného výpočtu. Dvě různé variantu algoritmu byly navrženy: z pohledu pixelu a z pohledu senzoru, který detekuje ultrazvukové vlny. Obě varianty byly implementovány třemi různými způsoby: pomocí vektorového paralelismu, vláknového paralelismu a paralelismu na grafické karetě (GPU). Všechny 3 implementace obou variant algoritmu byly testovány a výsledky byly srovnány s výsledkem rekonstrukce algoritmu reverzního času, přesnějšího ale mnohokrát pomalejšího algoritmu. Výsledky ukázaly, že GPU paralelismus nabízí nejrychlejší výpočet, cca. 200 krát rychlejší než u algoritmu reverzního času, a proto se dá použit i v aplikacích pracující v reálném čase.
6

Measurement and control of greenhouse gas emissions from beef cattle feedlots

Aguilar Gallardo, Orlando Alexis January 1900 (has links)
Doctor of Philosophy / Department of Biological and Agricultural Engineering / Ronaldo Maghirang / Emission of greenhouse gases (GHGs), including nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2), from open beef cattle feedlots is becoming an environmental concern; however, scientific information on emissions and abatement measures for feedlots is limited. This research was conducted to quantify GHG emissions from feedlots and evaluate abatement measures for mitigating emissions. Specific objectives were to: (1) measure N2O emissions from the pens in a commercial cattle feedlot; (2) evaluate the effectiveness of surface amendments in mitigating GHG emissions from feedlot manure; (3) evaluate the effects of water application on GHG emissions from feedlot manure; and (4) compare the photo-acoustic infrared multi-gas analyzer (PIMA) and gas chromatograph (GC) in measuring concentrations of N2O and CO2 emitted from feedlot manure. Field measurements on a commercial beef cattle feedlot using static flux chambers combined with GC indicated that N2O emission fluxes varied significantly with pen surface condition. The moist/muddy surface had the largest median emission flux; the dry and compacted, dry and loose, and flooded surfaces had significantly lower median emission fluxes. Pen surface amendments (i.e., organic residues, biochar, and activated carbon) were applied on feedlot manure samples in glass containers and evaluated for their effectiveness in mitigating GHG emissions. Emission fluxes were measured with the PIMA. For dry manure, all amendments showed significant reduction in N2O and CO2 emission fluxes compared with the control (i.e., no amendment). For moist manure, biochar significantly reduced GHG emissions at days 10 and 15 after application; the other amendments had limited effects on GHG emissions. The effect of water application on GHG emissions from feedlot manure was evaluated. Manure samples (with and without water application) were placed in glass containers and analyzed for GHG emission using a PIMA. For the dry manure, GHG emissions were negligible. Application of water on the manure samples resulted in short-term peaks of GHG emissions a few minutes after water application. Comparison of the GC and PIMA showed that they were significantly correlated but differed in measured concentrations of N2O and CO2. The PIMA showed generally lower N2O concentrations and higher CO2 concentrations than the GC.
7

Laser Activated Bonding of Wood

Church, William Travis 20 January 2011 (has links)
It was found that laser modified wood surfaces can be bonded together to create a wood composite without the need of any additive. This bonding method removes the need of applying adhesive, potentially lowers cost, and eliminates off gassing of petroleum resins, creating a wood product with many eco-friendly attributes. This body of work outlines a) initial chemical analysis of the laser modified surface b) its bond strength and c) the optimization of factors that control the strength of the bond. Surface chemical analysis on laser modified wood was conducted using photo acoustic Fourier transform infrared spectroscopy (PA-FTIR) and X-Ray photoelectron spectroscopy (XPS). Light microscopy and scanning electron microscopy were utilized for surface topology analysis.Differential scanning calorimetry (DSC) quantified the thermal properties of the modified wood surface. Screening of multiple factors that would contribute to surface modification and adhesion was performed utilizing mechanical testing. Optimization of significant factors that affect bond strength was determined statistically utilizing a design of experiment approach. Chemical analysis of the laser modified surface revealed changes in the carbonyl and aromatic regions indicating modification of the hemicellulose and lignin components, intensifying with increasing laser modification.The C1/C2 ratios found via XPS revealed that one or more of the following is occurring: more extractives have moved to the surface, condensation reactions among lignin units, and the loss of methoxy and breakage of aryl ether linkages occurred.Microscopy images showed color changes to a darker caramel color with a smoothing of surface topology, suggesting the occurrence of the softening and/or melting of wood polymers. DSC verified chemical and/or physical changes in the wood with the modified material now having a glass transition temperature between 130-150°C.DOE found that laser parameters (power and focus) as well as hot press parameters (temperature and pressure) were significant in optimizing the bond. The impact of the study is the first documentation of the ability to laser modifies wood surfaces and subsequently bond them together. The ability of the wood polymers at the surface to undergo flow at elevated temperature is implicated in the adhesion mechanism of the laser modified wood. / Master of Science

Page generated in 0.0541 seconds