Spelling suggestions: "subject:"bthermal waves"" "subject:"3thermal waves""
1 |
Investigação da teoria de acoplamentos de compósitos em campos de ondas térmicas / Investigation of the theory of coupling compositis in thermal waves fieldsCosta, Messias de Souza 28 August 2009 (has links)
Neste trabalho é elaborada uma solução analítica do campo de temperatura em um material opaco, contendo dois cilindros subsuperficiais paralelos e acoplados, iluminado por um feixe de luz modulado. O método é baseado na expansão de ondas térmicas planas e cilíndricas em série de funções de Bessel e Hankel. Primeiramente, o trabalho mostra o modelo da propagação de ondas térmicas planas em um material homogêneo, infinito, opaco e termicamente isotrópico. Então, para um melhor entendimento da abordagem matemática, iniciamos com o modelo mais simples, que é um material contendo apenas um cilindro. Após, ampliamos o modelo colocando dois cilindros separados neste material, onde aparecem os efeitos de múltiplos espalhamentos. Em seguida, tratamos os modelos descritos em meios semi-infinitos, no qual levamos em consideração a condição adiabática na fronteira da amostra com o ar, ou seja, o meio não perde calor para o ambiente. Esta condição é representada pelo método das imagens. A heterogeneidade do meio é alcançada com a generalização do modelo para um meio com N cilindros separados. Finalmente, incluimos as modificações dos modelos prévios devido ao acoplamento de dois cilindros. Este modelo é geral, no sentido que não existem restrições com respeito aos diâmetros e posições dos cilindros dentro do material, nem com relação às propriedades térmicas dos cilindros e matriz. Além disso, serve para calcular a temperatura em qualquer ponto da amostra. As ondas térmicas levam informações sobre a estrutura interna e propriedades térmicas do material compósito que, na prática, podem ser obtidas através das medidas da temperatura na superfície da amostra através de técnicas fototérmicas. Com isto, somos capazes de caracterizar estruturalmente um material compósito reforçado por fibras. Também podemos caracterizá-los termicamente obtendo suas propriedades térmicas efetivas. Medidas experimentais com amostras calibradas usando a técnica de termografia infravermelho lock-in (radiometria fototérmica), com frequência fixa, confirmam a validade do modelo. Além disso, um estudo da distribuição de ondas térmicas em materiais contendo esferas também estão discutidos teoricamente aqui. / In this work we elaborate an analytical solution of the temperature field of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam. The method is based on the expansion of plane and cylindrical thermal waves, in series of Bessel and Hankel functions. Firstly, the work shows the model of propagation of plane thermal waves in homogeneous, infinite, opaque and thermally isotropic materials. Then, for a clearer mathematical study, we initiate with a simpler method, which is a material containing only one cylinder. After that, we expanded the model by placing two separated cylinders inside of this material where the multiple scattering effects appeared. In the sequence we will treat the described model in semi-infinite materials, in which we take into consideration the adiabatic condition at the border of the sample with the air, that is, the material does not loose heat to the environment. This condition is represented through method of images. The heterogeneity of the medium is achieved with the generalization of the model for a medium with N separated cylinders. Finally, we include the modifications to the previous model due to the overlapping of these cylinders. This model is general, in the sense that there are no restrictions when considering the diameters and positions of the cylinders inside the material nor with respect to the thermal properties of the cylinders and matrix. Besides, it can be used to calculate the temperature at any point of the sample. The thermal waves carry informations about the composite materials internal structure and thermal properties that, in practice, can be obtained with the measurement of the temperature in the surface of the sample, through photothermal techniques. Considering this, we are able to structurally characterize a composite material of fibers. We are also capable of characterizings them thermally, obtaining their effective thermal properties. We have performed measurements on calibrated samples using lock-in infrared thermografy (photothermal radiometry) with a fixed frequency which confirms the validity of the model. Furthermore, a study of thermal waves distributions on materials containing spheres are also discussed theoretically here.
|
2 |
Investigação da teoria de acoplamentos de compósitos em campos de ondas térmicas / Investigation of the theory of coupling compositis in thermal waves fieldsMessias de Souza Costa 28 August 2009 (has links)
Neste trabalho é elaborada uma solução analítica do campo de temperatura em um material opaco, contendo dois cilindros subsuperficiais paralelos e acoplados, iluminado por um feixe de luz modulado. O método é baseado na expansão de ondas térmicas planas e cilíndricas em série de funções de Bessel e Hankel. Primeiramente, o trabalho mostra o modelo da propagação de ondas térmicas planas em um material homogêneo, infinito, opaco e termicamente isotrópico. Então, para um melhor entendimento da abordagem matemática, iniciamos com o modelo mais simples, que é um material contendo apenas um cilindro. Após, ampliamos o modelo colocando dois cilindros separados neste material, onde aparecem os efeitos de múltiplos espalhamentos. Em seguida, tratamos os modelos descritos em meios semi-infinitos, no qual levamos em consideração a condição adiabática na fronteira da amostra com o ar, ou seja, o meio não perde calor para o ambiente. Esta condição é representada pelo método das imagens. A heterogeneidade do meio é alcançada com a generalização do modelo para um meio com N cilindros separados. Finalmente, incluimos as modificações dos modelos prévios devido ao acoplamento de dois cilindros. Este modelo é geral, no sentido que não existem restrições com respeito aos diâmetros e posições dos cilindros dentro do material, nem com relação às propriedades térmicas dos cilindros e matriz. Além disso, serve para calcular a temperatura em qualquer ponto da amostra. As ondas térmicas levam informações sobre a estrutura interna e propriedades térmicas do material compósito que, na prática, podem ser obtidas através das medidas da temperatura na superfície da amostra através de técnicas fototérmicas. Com isto, somos capazes de caracterizar estruturalmente um material compósito reforçado por fibras. Também podemos caracterizá-los termicamente obtendo suas propriedades térmicas efetivas. Medidas experimentais com amostras calibradas usando a técnica de termografia infravermelho lock-in (radiometria fototérmica), com frequência fixa, confirmam a validade do modelo. Além disso, um estudo da distribuição de ondas térmicas em materiais contendo esferas também estão discutidos teoricamente aqui. / In this work we elaborate an analytical solution of the temperature field of an opaque material containing two overlapping and parallel subsurface cylinders, illuminated by a modulated light beam. The method is based on the expansion of plane and cylindrical thermal waves, in series of Bessel and Hankel functions. Firstly, the work shows the model of propagation of plane thermal waves in homogeneous, infinite, opaque and thermally isotropic materials. Then, for a clearer mathematical study, we initiate with a simpler method, which is a material containing only one cylinder. After that, we expanded the model by placing two separated cylinders inside of this material where the multiple scattering effects appeared. In the sequence we will treat the described model in semi-infinite materials, in which we take into consideration the adiabatic condition at the border of the sample with the air, that is, the material does not loose heat to the environment. This condition is represented through method of images. The heterogeneity of the medium is achieved with the generalization of the model for a medium with N separated cylinders. Finally, we include the modifications to the previous model due to the overlapping of these cylinders. This model is general, in the sense that there are no restrictions when considering the diameters and positions of the cylinders inside the material nor with respect to the thermal properties of the cylinders and matrix. Besides, it can be used to calculate the temperature at any point of the sample. The thermal waves carry informations about the composite materials internal structure and thermal properties that, in practice, can be obtained with the measurement of the temperature in the surface of the sample, through photothermal techniques. Considering this, we are able to structurally characterize a composite material of fibers. We are also capable of characterizings them thermally, obtaining their effective thermal properties. We have performed measurements on calibrated samples using lock-in infrared thermografy (photothermal radiometry) with a fixed frequency which confirms the validity of the model. Furthermore, a study of thermal waves distributions on materials containing spheres are also discussed theoretically here.
|
3 |
Design and construction of a novel thermal interferometerKumar, Nishith January 2009 (has links)
Abstract not available.
|
4 |
Efeito anômalo nas medidas de lente térmica em vidros com pontos quânticos de CdTe / Anomalous effect in thermal lens measurements in CdTe quantum dot doped glassesSoffner, Max Erik 30 August 2005 (has links)
Orientador: Antonio Manoel Mansanares / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-05T01:51:31Z (GMT). No. of bitstreams: 1
Soffner_MaxErik_M.pdf: 11770260 bytes, checksum: a38f679b7118b0715ab2398a3b6eab6d (MD5)
Previous issue date: 2005 / Resumo: Os vidros dopados com semicondutores são objeto de grande interesse pois, em geral, apresentam fortes não-linearidades ópticas e tempos de resposta curtos, devido ao efeito de confinamento quântico que estes materiais apresentam. Neste trabalho, utilizamos a técnica de lente térmica para determinar a difusividade térmica ( a ) e o comportamento da variação do índice de refração com a temperatura ( dn/dT ) em vidros borossilicatos dopados com CdTe com diferentes tempos de tratamento térmico a 540 º C. Os resultados da lente térmica mostraram o aparecimento de um comportamento anômalo para altas intensidades do laser de excitação, que consiste numa queda do sinal para tempos de medida longos. Tal característica foi comprovada com outra técnica fototérmica, a do efeito miragem. Uma possível explicção para esse comportamento é a saturação dos níveis eletrônicos do ponto quântico. A supressão da respectiva banda de absorção reduz o índice de refração para freqüências mais baixas, dando origem a uma lente divergente, compatível com a queda observada no sinal / Abstract: Semiconductor doped glasses are of great interest because of their non-linear optical properties and short response time due to quantum confinement. In this work, we used the thermal lens technique to determine the thermal diffusivity (a ) and the behavior of the temperature coefficient of the refractive index (dn/dT ) in CdTe doped borosilicate glasses treated at 540 º C for different time intervals. The thermal lens measurements showed an anomalous behavior at high intensities of the excitacion beam, which consists in a signal reduction for long acquisition time. This characteristics was confirmed using another photothermal technique, namely, the mirage effect. One possible explanation for this behavior is the saturation of the electronic levels of the quantum-dot. The suppresion of a given absorption band reduces the refractive index at lower frequencies, thus originating a divergent lens, which is in agreement with the observed signal reduction / Mestrado / Física da Matéria Condensada / Mestre em Física
|
5 |
Transiente Methoden der Infrarot-Thermografie zur zerstörungsfreien Fehleranalytik in der mikroelektronischen Aufbau- und Verbindungstechnik / Transient methods of infrared thermography for nondestructive failure analysis in microelectronic packagingMay, Daniel 20 March 2015 (has links) (PDF)
In dieser Arbeit wurde eine neue fehleranalytische Methode zur industriellen Anwendung an neuen Technologien der Aufbau- und Verbindungstechnik entwickelt. Das Verfahren basiert auf der Wechselwirkung von thermischen Wellen und Defekten.
Die Besonderheit ist dabei die Zerstörungsfreiheit, die Geschwindigkeit, das Auflösungsvermögen und die durch neueste IR-Detektoren erreichte Temperaturempfindlichkeit.
Es wurden grundlegende Studien bezüglich Auflösung und parasitären Effekten bei der Anwendung unter industriellen Randbedingungen durchgeführt. Dabei wurde eine systematische Vorgehensweise bezüglich der Komplexität gewählt.
Dies ermöglicht nun u.a. eine Vorhersage der zu erwartenden Prüfdauer zur Auflösung vergrabener Defekte, der Begrenzung der maximalen Anregungsimpulsbreite (bei gegebener Defekttiefe) und die quantitative Ermittlung des Einflusses einer Lackschicht.
Methodisch kamen grundsätzlich Simulationen und vergleichende Experimente zum Einsatz. Es wurden spezielle Proben zur Isolierung und Klärung parasitärer Effekte verwendet. Letztlich konnte das Messsystem erfolgreich an industriellen Problemstellung demonstriert werden.
Das entwickelte Messsystem zeichnet sich durch hohe Flexibilität aus. Verschiedene problemangepasste Anregungsquellen (interne und externe Anregung durch zahlreiche physikalische Effekte) kommen zum Einsatz.
Das Messsystem besteht aus vier Hauptmodulen, der Differenzbild-Methode, der Impulsthermografie, und zwei Varianten der LockIn-Thermografie.
Zusammen ist das System in der Lage, Voids, Delaminationen und Risse in verschiedenen Bereichen auch der modernen AVT sicher zu erkennen.
Es werden dabei Temperaturauflösugnen bis zu 5 mK und laterale Auflösungen bis 17 µm erreicht.
Diese Arbeit legt einen Grundstein für die Anwendung der thermischen Fehleranalytik in der Industrie, indem hier die Grenzen der IR-Messtechnik aufgezeigt und charakterisiert werden. / In this work a new failure analytical method for the industrial application of new technologies in electronic packaging has been developed.
The developed method is based on the interaction of the thermal waves and defects.
The special fature is non-destructive, speed, resolution and high temperature sensitivity due to latest IR-detectors.
It fundamental studies regarding resolution and parasitic effects in the application were carried out cinsidering industrial conditions. Here, a systematic approach regarding the complexity has been selected.
This now enables a prediction of the expected test period for detecting buried defects, limits for excitation pulse width (for a given defect depth) and the quantitative determination of the influence of parasitic paints.
Methodically always simulations and comparative experiments were used. Simple samples for the isolation and purification of parasitic effects has been used. Finally, the measurement system has been successfully demonstrated on an industrial applications.
The developed measurement system is characterized by high flexibility. Different problem-adapted excitation sources (internal and external excitation by numerous physical effects) are used.
The measurement system currently consists of four main modules, the difference image method, the pulse thermography, and two variants of LockIn-thermography. Together, the system is capable of detecting voids, delaminations and cracks in various fields of electronic packageing.
It will reach temperature resolutions up to 5 mK and lateral resolutions down to 17 µm.
This work stes a foundation for the application of thermal failure analysis for industry by showing and charcterization the limits of IR imaging.
|
6 |
Transiente Methoden der Infrarot-Thermografie zur zerstörungsfreien Fehleranalytik in der mikroelektronischen Aufbau- und VerbindungstechnikMay, Daniel 10 March 2015 (has links)
In dieser Arbeit wurde eine neue fehleranalytische Methode zur industriellen Anwendung an neuen Technologien der Aufbau- und Verbindungstechnik entwickelt. Das Verfahren basiert auf der Wechselwirkung von thermischen Wellen und Defekten.
Die Besonderheit ist dabei die Zerstörungsfreiheit, die Geschwindigkeit, das Auflösungsvermögen und die durch neueste IR-Detektoren erreichte Temperaturempfindlichkeit.
Es wurden grundlegende Studien bezüglich Auflösung und parasitären Effekten bei der Anwendung unter industriellen Randbedingungen durchgeführt. Dabei wurde eine systematische Vorgehensweise bezüglich der Komplexität gewählt.
Dies ermöglicht nun u.a. eine Vorhersage der zu erwartenden Prüfdauer zur Auflösung vergrabener Defekte, der Begrenzung der maximalen Anregungsimpulsbreite (bei gegebener Defekttiefe) und die quantitative Ermittlung des Einflusses einer Lackschicht.
Methodisch kamen grundsätzlich Simulationen und vergleichende Experimente zum Einsatz. Es wurden spezielle Proben zur Isolierung und Klärung parasitärer Effekte verwendet. Letztlich konnte das Messsystem erfolgreich an industriellen Problemstellung demonstriert werden.
Das entwickelte Messsystem zeichnet sich durch hohe Flexibilität aus. Verschiedene problemangepasste Anregungsquellen (interne und externe Anregung durch zahlreiche physikalische Effekte) kommen zum Einsatz.
Das Messsystem besteht aus vier Hauptmodulen, der Differenzbild-Methode, der Impulsthermografie, und zwei Varianten der LockIn-Thermografie.
Zusammen ist das System in der Lage, Voids, Delaminationen und Risse in verschiedenen Bereichen auch der modernen AVT sicher zu erkennen.
Es werden dabei Temperaturauflösugnen bis zu 5 mK und laterale Auflösungen bis 17 µm erreicht.
Diese Arbeit legt einen Grundstein für die Anwendung der thermischen Fehleranalytik in der Industrie, indem hier die Grenzen der IR-Messtechnik aufgezeigt und charakterisiert werden. / In this work a new failure analytical method for the industrial application of new technologies in electronic packaging has been developed.
The developed method is based on the interaction of the thermal waves and defects.
The special fature is non-destructive, speed, resolution and high temperature sensitivity due to latest IR-detectors.
It fundamental studies regarding resolution and parasitic effects in the application were carried out cinsidering industrial conditions. Here, a systematic approach regarding the complexity has been selected.
This now enables a prediction of the expected test period for detecting buried defects, limits for excitation pulse width (for a given defect depth) and the quantitative determination of the influence of parasitic paints.
Methodically always simulations and comparative experiments were used. Simple samples for the isolation and purification of parasitic effects has been used. Finally, the measurement system has been successfully demonstrated on an industrial applications.
The developed measurement system is characterized by high flexibility. Different problem-adapted excitation sources (internal and external excitation by numerous physical effects) are used.
The measurement system currently consists of four main modules, the difference image method, the pulse thermography, and two variants of LockIn-thermography. Together, the system is capable of detecting voids, delaminations and cracks in various fields of electronic packageing.
It will reach temperature resolutions up to 5 mK and lateral resolutions down to 17 µm.
This work stes a foundation for the application of thermal failure analysis for industry by showing and charcterization the limits of IR imaging.
|
Page generated in 0.035 seconds