• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 10
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 115
  • 26
  • 17
  • 14
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Electric Transport of Rare-earth Metal Oxy-hydride Thin Films

Kazi, Suraya January 2021 (has links)
In this project, I investigate the photoconductivenature of photochromic rare-earth metal oxy hydrides (REMHO). Such materials have received increasingscientific attention since they show a color-neutralphotochromic effect that can be applied, e.g., in smartwindows or chromogenic devices. Photochromicmaterials reversibly turn opaque from transparentunder illumination with light of optical wavelength. Inrecent studies it was found that these materials alsoshow an instant decrease in resistivity whenilluminated which can be used in optical sensors. Tounderstand the nature of this photoconductive effect,I grew yttrium oxy hydride thin films by reactivemagnetron sputtering. I measured the resistivity forillumination from front and substrate side, opticaltransmission and compositions of the samples andrelated the results to photoconductivity. I show thatphotoconductivity is a bulk effect and not directlyrelated to photochromism. Samples that almost lostphotochromism due to aging, still show strongphotoconductivity. Moreover, it was observed that theresistance increased faster during bleaching for frontillumination than for back illumination.
102

Nízkomolekulární materiály pro organickou elektroniku a fotoniku / Low-molecular materials for organic electronics and photonics

Češka, Matěj January 2012 (has links)
This master´s thesis deals with organic materials for use in electronics and photonics. Attention was paid to low molecular weight materials. The theoretical part of this thesis contains brief introduction to organic electronics and photonics. In particular, organic transistors, organic solar cells and organic light-emitting diodes are mentioned. The experimental part is focused on study of electrical and optical properties of two types of phthalocyanines. Thin films and solutions of phthalocyanines were characterized by UV-VIS spectroscopy. Thin films were also characterized by current voltage characteristics, spectral response measurement of photocurrent and by method of transient photoconductivity. It was found that illumination affects the electrical properties of thin layers of phthalocyanines, the performance of the prepared thin films depends on the type phthalocyanine and also depends on the thickness of the layer.
103

Modelling Band Gap Gradients and Cd-free Buffer Layers in Cu(In,Ga)Se2 Solar Cells

Pettersson, Jonas January 2012 (has links)
A deeper understanding of Cu(In,Ga)Se2 (CIGS) solar cells is important for the further improvement of these devices. This thesis is focused on the use of electrical modelling as a tool for pursuing this aim. Finished devices and individual layers are characterized and the acquired data are used as input in the simulations. Band gap gradients are accounted for when modelling the devices. The thesis is divided into two main parts. One part that treats the influence of cadmium free buffer layers, mainly atomic layer deposited (Zn,Mg)O, on devices and another part in which the result of CIGS absorber layer modifications is studied. Recombination analysis indicates that interface recombination is limitting the open circuit voltage (Voc) in cells with ZnO buffer layers. This recombination path becomes less important when magnesium is introduced into the ZnO giving a positive conduction band offset (CBO) towards the CIGS absorber layer. Light induced persistent photoconductivity (PPC) is demonstrated in (Zn,Mg)O thin films. Device modelling shows that the measured PPC, coupled with a high density of acceptors in the buffer-absorber interface region, can explain light induced metastable efficiency improvement in CIGS solar cells with (Zn,Mg)O buffer layers. It is shown that a thin indium rich layer closest to the buffer does not give any significant impact on the performance of devices dominated by recombination in the CIGS layer. In our cells with CdS buffer the diffusion length in the CIGS layer is the main limitting factor. A thinner CIGS layer improves Voc by reducing recombination. However, for thin enough absorber layers Voc deteriorates due to recombination at the back contact. Interface recombination is a problem in thin devices with Zn(O,S) buffer layers. This recombination path is overshadowed in cells of standard thickness by recombination in the CIGS bulk. Thin cells with Zn(O,S) buffer layers have a higher efficiency than CdS cells with the same absorber thickness.
104

Physical Properties Of Cdse Thin Films Produced By Thermal Evaporation And E-beam Techniques

Hus, Saban Mustafa 01 September 2006 (has links) (PDF)
CdSe thin films were deposited by thermal evaporation and e-beam evaporation techniques on to well cleaned glass substrates. Low dose of boron have been implanted on a group of samples. EDAX and X-ray patterns revealed that almost stoichiometric polycrystalline films have been deposited in (002) preferred orientation. An analysis of optical measurements revealed a sharp increase in absorption coefficient below 700 nm and existence of a direct allowed transition. The calculated band gap was around 1.7 eV. The room temperature conductivity values of the samples were found to be between 9.4 and 7.5x10-4 (&amp / #937 / -cm)-1 and 1.6x10-6 and 5.7x10-7 (&amp / #937 / -cm)-1for the thermally evaporated and e-beam evaporated samples respectively. After B implantation conductivity of these films increased 5 and 8 times respectively. Hall mobility measurements could be performed only on the thermally evaporated and B-implanted e-beam evaporated samples and found to be between 8.8 and 86.8 (cm2/V.s). The dominant conduction mechanism were determined to be thermionic emission above 250 K for all samples. Tunneling and v variable range hopping mechanisms have been observed between 150-240 K and 80- 140 K respectively. Photoconductivity &amp / #8211 / illumination intensity plots indicated two recombination centers dominating at the low and high regions of studied temperature range of 80-400 K. Photoresponse measurements have corrected optical band gap measurements by giving peak value at 1.72 eV.
105

Thermally Stimulated Current Study Of Traps Distribution In Beta-tlins2 Layered Crystals

Isik, Mehmet 01 June 2008 (has links) (PDF)
Trapping centres in as-grown TlInS2 layered single crystals have been studied by using a thermally stimulated current (TSC) technique. TSC measurements have been performed in the temperature range of 10-300 K with various heating rates. Experimental evidence has been found for the presence of five trapping centres with activation energies 12, 14, 400, 570 and 650 meV. Their capture cross-sections and concentrations were also determined. It is concluded that in these centres retrapping is negligible as confirmed by the good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping. An exponential distribution of traps was revealed from the analysis of the TSC data obtained at different light excitation temperatures. The transmission and reflection spectra of TlInS2 crystals were measured over the spectral region of 400-1100 nm to determine the absorption coefficient and refractive index. The analysis of the room temperature absorption data revealed the coexistence of the indirect and direct transitions. The absorption edge was observed to shift toward the lower energy values as temperature increases from 10 to 300 K. The oscillator and the dispersion energies, and the zero-frequency refractive index were also reported. Furthermore, the chemical composition of TlInS2 crystals was determined from energy dispersive spectroscopic analysis. The parameters of monoclinic unit cell were found by studying the x-ray powder diffraction.
106

Numerische Modellierung und quantitative Analyse der Mikrowellendetektierten Photoleitfähigkeit (MDP)

Hahn, Torsten 17 May 2010 (has links) (PDF)
Die hochempfindliche Methode der „Microwave Detected Photoconductivity“ (MDP) wird eingesetzt, um technologisch relevante Halbleiterparameter wie die Ladungsträgerlebensdauer, Photoleitfähigkeit und Defektkonzentrationen über viele Größenordnungen der optischen Anregung hinweg zu untersuchen. Durch die Entwicklung und die Anwendung eines neuartigen Modellierungssystems für die Ladungsträgerdynamik in Halbleitern können wichtige Defektparameter quantitativ aus MDP Messungen in Abhängigkeit der Anregungsintensität bestimmt werden. Ein Verfahren zur Charakterisierung von Haftstellen (Konzentration, Energielage, Einfangsquerschnitt) bei konstanter Temperatur wird vorgestellt. Das technologisch relevante Verfahren des quantitativen Eisennachweises in p-dotiertem Silizium wird für die MDP Methode angepasst und entsprechende Messergebnisse mit DLTS Resultaten verglichen. Ein detaillierter Vergleich der gängigsten kontaktlosen Messverfahren QSSPC und MW-PCD mit der MDP zeigt, dass entgegen gängiger Annahmen die unterschiedlichen Anregungsbedingungen zu drastischen Unterschieden in den gemessenen Werten der Ladungsträgerlebensdauer führen. Dies wird sowohl durch theoretische Berechnungen als auch durch praktische Messergebnisse belegt.
107

Efficient terahertz photoconductive source

Kim, Joong Hyun 17 November 2008 (has links)
The photoconductive method is one of the oldest methods for the generation of THz room temperature operated THz electromagnetic waves. The THz photoconductive source has operated at a lower power level in the order of hundreds of nW. In addition, the energy conversion of optical to THz efficiency has remained extremely low. One of the most efficient THz photoconductive sources is a trap-enhanced field (TEF) effect source. The field is measured to contain more than 90% of the total DC bias within the first 5 µm of an 80 µm gap between the electrodes reaching kV/cm with only a modest bias. The overall THz power, however, has remained low, due to its rapid saturation. To date, there has been a limited understanding of the TEF effect. In this thesis, a more detailed experimental investigation of TEF effect current transport and field distribution based on annealing is presented to explain some of the underlining physics of TEF effect. A spatially extended line excitation is introduced to effectively reduce the screening effect while still exploiting the TEF region to maintain high efficiency and reach the µW regime. The record efficiency reached by this method is demonstrated. An experimental demonstration with a numerical analysis of the line excitation is presented. The spectral analysis of both a point and a line excitation demonstrate that the line excitation spectrum is not only comparable to that of the point excitation, but also extends the range of useful lower frequency content. To further improve the THz efficiency, the line excitation THz array is investigated.
108

Correlating Photoconductivity with Photochromism in Oxygen-containing Rare-earth Metal Hydride Thin Films

Kazi, Suraya January 2021 (has links)
Scientists have recently discovered simultaneous photoconductivity and photochromism (i.e., optical switching upon light exposure) of oxygen-containing rare-earth metal hydrides (REMHO). A deep understanding of these extraordinary optical and electrical properties can open the door to advanced technological uses such as smart windows. This thesis work is to establish a correlation between the photochromism of these materials with their photoconductive response and comprehend the underlying physics behind them. The samples were grown by reactive magnetron sputtering. The dynamics of the photochromic effect were observed by recording the time-resolved relative transmittance of the films during photodarkening and bleaching using a UV-vis spectrometer. The samples were characterized electrically by employing the two-point probe resistance measurement. The depth profiles of the concentration of chemical elements were extracted from Ion Beam Analysis. A systematic study was performed to see how the photoconductive and photochromic responses of the REMHO thin films depend on the wavelength and intensity of the illuminating light as well as the chemical composition of the films. Both effects showed i) higher response for shorter wavelength, ii) a cut-off near a similar wavelength, iii) saturation near UV region, and iv) similar relaxation time but with different kinetics. Multiple measurements performed on the same sample showed that the previous measurement affects the next measurement indicating a memory effect. Finally, the photoconductive response showed an increase with increasing oxygen concentration.
109

Chemická pasivace povrchu křemíkových desek pro solární články / Chemical passivation of surface for silicon solar cells

Solčanský, Marek January 2009 (has links)
This master´s thesis deals with an examination of different solution types a for the chemical passivation of a silicon surface. Various solutions are tested on silicon wafers for their consequent comparison. The main purpose of this work is to find optimal solution, which suits the requirements of a time stability and start-up velocity of passivation, reproducibility of the measurements and a possibility of a perfect cleaning of a passivating solution remainig from a silicon surface, so that the parameters of a measured silicon wafer will not worsen and there will not be any contamination of the other wafers series in the production after a repetitive return of the measured wafer into the production process. The cleaning process itself is also a subject of a development.
110

Numerische Modellierung und quantitative Analyse der Mikrowellendetektierten Photoleitfähigkeit (MDP)

Hahn, Torsten 08 May 2009 (has links)
Die hochempfindliche Methode der „Microwave Detected Photoconductivity“ (MDP) wird eingesetzt, um technologisch relevante Halbleiterparameter wie die Ladungsträgerlebensdauer, Photoleitfähigkeit und Defektkonzentrationen über viele Größenordnungen der optischen Anregung hinweg zu untersuchen. Durch die Entwicklung und die Anwendung eines neuartigen Modellierungssystems für die Ladungsträgerdynamik in Halbleitern können wichtige Defektparameter quantitativ aus MDP Messungen in Abhängigkeit der Anregungsintensität bestimmt werden. Ein Verfahren zur Charakterisierung von Haftstellen (Konzentration, Energielage, Einfangsquerschnitt) bei konstanter Temperatur wird vorgestellt. Das technologisch relevante Verfahren des quantitativen Eisennachweises in p-dotiertem Silizium wird für die MDP Methode angepasst und entsprechende Messergebnisse mit DLTS Resultaten verglichen. Ein detaillierter Vergleich der gängigsten kontaktlosen Messverfahren QSSPC und MW-PCD mit der MDP zeigt, dass entgegen gängiger Annahmen die unterschiedlichen Anregungsbedingungen zu drastischen Unterschieden in den gemessenen Werten der Ladungsträgerlebensdauer führen. Dies wird sowohl durch theoretische Berechnungen als auch durch praktische Messergebnisse belegt.

Page generated in 0.0416 seconds