Spelling suggestions: "subject:"photoresists"" "subject:"photorésists""
51 |
Design and synthesis of molecular resists for high resolution patterning performanceCheshmehkani, Ameneh 13 January 2014 (has links)
In this thesis, different approaches in synthesizing molecular resist are examined, and structure-property relations for the molecular resist properties are studied. This allows for design of resists that could be studied further as either negative or positive tone resists in photolithography. A series of compounds having different number of acrylate moiety, and different backbones were investigated for photoresist application. Thermal curing of acrylate compounds in organic solvent was also examined. Film shrinkage, as well as auto-polymerization was observed for these compounds that make them unsuitable as photoresist material. Furthermore, calix[4]resorcinarenes (C4MR) was chosen as backbone, and the functional groups was selected as oxetane and epoxy. Full functionalized C4MR compounds with oxetane, epoxy and allyl were synthesized. Variable-temperature NMR of C4MR-8Allyl was studied in order to get a better understanding of the structure’s conformers. Energy barrier of exchange (ΔG#) was determined from coalescence temperatures, and was 57.4 KJ/mol for aromatic and vinyl hydrogens and 62.1 KJ/mol for allylic hydrogens.
|
52 |
A novel method for zinc oxide nanowire sensor fabricationPelatt, Brian D. 03 March 2010 (has links)
Interest in nanomaterials is motivated partly by their potential for sensor arrays to detect
different gases. Nanowires in particular are of interest because their high surface-to-volume
ratio promises the possibility of high sensitivity. However, because of their discrete
quasi-one-dimensional geometry, electrical integration of nanowires into photolithographically
defined devices and circuits is challenging and remains one of the obstacles to
their widespread use. In this thesis, a novel method for fabricating electrically integrated
zinc oxide nanobridge devices using carbonized photoresist is investigated. The conductivity
of carbonized photoresist is known and nanowire growth on carbonized photoresist
has recently been reported, suggesting the possibility of simultaneous use as a nucleation
layer and electrode. However, these reports did not characterize the contact between the
ZnO nanowires and carbonized photoresist. In this work, ZnO nanobridges are fabricated
between opposing carbonized photoresist electrodes and characterized both electrically
and with electron microscopy. Operation of nanobridge devices as bottom gate transistors,
UV sensors, and gas sensors is demonstrated. / Graduation date: 2010
|
53 |
Mechanical properties of SU-8 and carbon nanotubes reinforced SU-8 from room temperature to high temperaturesMakhar, Sandeep P. January 2006 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Mechanical Engineering, 2006. / Includes bibliographical references.
|
54 |
Pattern collapse in lithographic nanostructures: quantifying photoresist nanostructure behavior and novel methods for collapse mitigationYeh, Wei-Ming 09 April 2013 (has links)
The Microelectronics industry has continuously pushed the limit of critical dimensions to sub-20 nm. One of the challenges is pattern collapse, caused by unbalanced capillary forces during the final rinse and drying process. The use of surfactants offers a convenient method to reduce capillary forces but causes another deformation issue. This thesis work focuses on alternative approaches that are compatible with lithographic processes to mitigate pattern collapse. First, an e-beam lithography pattern with a series of varying line and space widths has been specifically designed in order to quantitatively study pattern collapse behavior. This pattern generates increasing stress in the pairs of resist lines as one moves across the pattern array and eventually a sufficiently small space value (critical space, S1c) is reached in each array such that the stress applied to the resist exceeds the critical stress (σc) required for pattern bending and subsequently feature deformation and collapse occurrs. The patterns we designed allow us to qualitatively and quantitatively study pattern collapse and obtain consistent, reproducible results.
In the first part of the thesis work, a quick surface crosslink (called a reactive rinse) that involves the strengthening of the resist using crosslinking via carbodiimide chemistry while the resist structures are still in their wet state, has been developed and demonstrated. This technique provides efficient and significant improvement on the pattern collapse issue. In the second part of the thesis work, a triethoxysilane compound, vinyl ether silane (VE), has been successfully synthesized. It can be used to modify the silicon or silicon nitride substrates and form a covalent bond with the resist film instead of manipulating the surface energies using common HMDS. Compared to traditional Hexamethyldisilazane (HMDS) vapor primed surfaces, the implementation of the VE adhesion promoter resulted in a significant improvement in the adhesion and resistance to adhesion based pattern collapse failure in small sub-60 nm resist features. In the third part of the thesis work, the effect of drying rates and drying methods has been systematically studied. SEM analysis and critical stress results showed that fast drying appear to reduce the resist collapse. The line pair orientations in each pattern array with respect to the wafer radius reveal an apparent effect of fluid flow and centrifugal forces on collapse. Finally, a comprehensive pattern collapse model that incorporates adhesion based pattern failure and elastoplastic deformation-based failure, and dimensionally dependent resist modulus properties has been developed. This model provides such an excellent prediction of the experimental data and supports the idea that this level of combined adhesion-failure and elastoplastic-failure based pattern collapse modeling, where one explicitly considers the dimensionally dependent mechanical properties of the resist can be quantitatively predictive and useful for understanding the pattern collapse behavior of polymeric nanostructures.
|
55 |
Surface Monolayer Initiated Polymerization: A Novel Means of Fabricating Sub - 100 nm FeaturesMcCoy, Kendra Michele 12 April 2004 (has links)
The speed of microelectronic devices is controlled by the size of the transistor gate. In order to create faster devices, the size of this transistor gate must shrink. Microlithography is the method used to define patterns in semiconductor devices, and it is optimized periodically to create smaller features. It is a subtractive process that relies on the selective removal of sections of a photosensitive polymeric film called photoresist. This photoresist is exposed to patterned ultraviolet radiation that changes the local solubility of the film and allows for the creation of relief patterns in the resist using a developing solvent. Decreasing the wavelength of the light used to expose the patterns is the primary method for decreasing the minimum feature size that can be printed by this process. There are a number of challenges associated with decreasing the exposure wavelength for conventional lithographic processes. First of all, the polymeric films must be transparent at the exposure wavelength in order to allow light to propagate through the entire thickness of the film. Secondly, there is a limit in the thickness of the photoresist films that can be used. This thickness limits the etch resistance of the film. In fact, the issues concerning etch resistance and transparency are generally in opposition. This makes designing photoresist platforms for future lithographic applications very difficult. Therefore, to overcome these limitations, we are developing an unconventional approach to microlithography. In our approach, entitled Surface Monolayer Initiated Polymerization, polymer structures are formed on a surface by polymerizing a monomer in a patterned fashion using a self-assembled monolayer that can be locally activated to initiate the reaction. This process has been demonstrated by creating patterned polystyrene films on native silicon dioxide surfaces. In these initial studies, it took more than one day to create features. This is unacceptable for a lithographic application. The kinetics of all the processes involved in making these patterned layers is described. Along with these rate constants, means of optimizing these rates are also presented. Additionally, the patterns grown in these initial studies exhibited poor uniformity. Methods of optimizing the patterns formed are also presented.
|
56 |
Organic materials for microelectronics : 157 nm photoresists and electrooptic liquid crystalsHung, Raymond Jui-pu, 1969- 21 March 2011 (has links)
Not available / text
|
57 |
Multi-beam-interference-based methodology for the fabrication of photonic crystal structuresStay, Justin L. January 2009 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Thomas K. Gaylord; Committee Member: Donald D. Davis; Committee Member: Gee-Kung Chang; Committee Member: Muhannad S. Bakir; Committee Member: Phillip N. First. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
58 |
Molecular resists for advanced lithography - design, synthesis, characterization, and simulationLawson, Richard A. 04 April 2011 (has links)
Many problems exist in current photoresist designs that will limit their ability to obtain the performance required for future generations of integrated circuit devices. In order to overcome these challenges, novel resist designs are required, along with advancement in the fundamental understanding of the source of these problems. A mesoscale kinetic Monte Carlo simulation of resists was developed to probe the effects of changes in resist formulation and processing. A detailed SEM simulator was developed in order to better understand the effect of metrology on the characterization of the final resist relief image. Several important structure-property relations were developed for the prediction of glass transition temperature in molecular resists and the prediction of the solubility of molecular resists in developer. Five new families of molecular resists were developed that provide solutions to some of the limitations in current resist designs. Single component molecular resists have all of the functional groups required to act as a chemically amplified resist contained in a single molecule. This eliminates inhomogeneities in the resist and provides improved line edge roughness. Non-chemically amplified molecular resists were developed that have very good sensitivity due to the unique dissolution properties of molecular resists. Negative tone molecular resists were developed that have an excellent combination of resolution, sensitivity, and line edge roughness with better resolution than has been previously seen in negative tone resists. Control methods were also developed to improve the resolution of these types of negative tone resists even further.
|
59 |
Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymersCheng, Jing 20 September 2013 (has links)
It’s becoming more and more difficult to make smaller, denser, and faster computer chips. There’s an increasing demand to design new materials to be applied in current lithographic process to get higher patterning performance. In this work, the aqueous developable single molecule resists were introduced, synthesized and patterned. A new group of epoxide other than glycidyl ether, cyclohexene oxide was introduced to functionalize a molecular core and 15 nm resolution was obtained. The directed self-assembly (DSA) of block copolymers as an alternative lithographic technique has received growing interest in the last several years for performing higher levels of pitch subdivision. A 3-step simplified process for DSA by using a photodefinable substrate was introduced by using a functionalized polyphenol with an energy switchable group and a crosslinkable group. Two high χ block copolymers PS-b-PAA and PS-b-PHEMA were successfully designed and synthesized via ATRP with controlled Mw and PDI. The size of the same PS-b-PAA polymer was tunable by varying the thermal annealing time. PS-b-PHEMA shows to be a suitable block polymer for the industry-friendly thermal annealing process. A self-complementary hydrogen-bonding urea group as a center group was used to facilitate the self-assembly of polymers. “Click” chemistry is promising for synthesis of PS-Urea-Urea-PMMA.
|
60 |
Photoresist and ion-exchange chemistry of HafSOxTelecky, Alan J. 01 May 2012 (has links)
The chemistry of hafnium oxide based and materials are described in the context of ion exchange and lithography. HafSOx, represented by the composition HfO₂₋[subscript x](SO₄)x, is described to possess a significant capacity towards ion exchange in acidic and basic solutions, enabling films of HafSOx to be cleanly and readily be converted to oxide films by neutralization. The optical properties, composition and morphology of these oxide films are characterized. The fabrication of mixed metal oxide films is demonstrated via solution and ion exchange routes.
This thesis also explores the photoresist chemistry of HafSOx resists. A photoreaction mechanism based on the decomposition of peroxide is proposed. In addition, the patterning of HafSOx films by 193 nm, extreme ultraviolet (EUV) and electron beam radiation is described, and the influence of composition on its photoresist properties is studied. / Graduation date: 2012
|
Page generated in 0.045 seconds