• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 17
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INVESTIGATION OF BAND BENDING IN n- AND p-TYPE GaN

Foussekis, Michael 27 April 2012 (has links)
This dissertation details the study of band bending in n- and p-type GaN samples with a Kelvin probe utilizing different illumination geometries, ambients (air, oxygen, vacuum 10-6 mbar), and sample temperatures (77 – 650 K). The Kelvin probe, which is mounted inside an optical cryostat, is used to measure the surface potential. Illumination of the GaN surface with band-to-band light generates electron-hole pairs, which quickly separate in the depletion region due to a strong electric field caused by the near-surface band bending. The charge that is swept to the surface reduces the band bending and generates a surface photovoltage (SPV). Information about the band bending can be obtained by fitting the SPV measurements with a thermionic model based on the emission of charge carriers from bulk to surface and vice versa. The band bending in freestanding n-type GaN templates has been evaluated. The Ga-polar and N-polar surfaces exhibit upward band bending of about 0.74 and 0.57 eV, respectively. The surface treatment also plays a major role in the SPV behavior, where the SPV for mechanical polished surfaces restores faster than predicted by a thermionic model in dark. When measuring the photoluminescence (PL) signal, the PL from mechanically polished surfaces was about 4 orders of magnitude smaller than the PL from chemically mechanically polished surfaces. The PL and SPV behaviors were explained by the presence of a large density of defects near the surface, which quench PL and aid in the restoration of the SPV via electron hopping between defects. Temperature-dependent SPV studies have also been performed on doped n- and p-type GaN samples. In Si-doped n-type GaN, the estimated upward band bending was about 1 eV at temperatures between 295 and 500 K. However, in p-type GaN, the downward band bending appeared to increase with increasing temperature, where the magnitude of band bending increased from 0.8 eV to 2.1 eV as the temperature increased from 295 to 650 K. It appears that heating the p-type GaN samples allows for band bending values larger than 1 eV to fully restore. Pre-heating of samples was of paramount importance to measure the correct value of band bending in p-type GaN. The slope of the dependence of the SPV on excitation intensity at low temperatures was larger than expected; however, once the temperature exceeded 500 K, the slope began to reach values that are in agreement with a thermionic model.
2

Surface photovoltage transients for p-type AlGaN

Phumisithikul, Karen L 01 January 2015 (has links)
There is an understanding of surface photovoltage (SPV) behavior for GaN, yet little is known about the SPV behavior for AlGaN. In this work, a Kelvin probe was used to measure the SPV for p-type AlGaN. Very slow SPV transients were found in AlGaN, which could not be explained with a simple thermionic model. A possible explanation of this behavior is the segregation of impurities to the surface, which causes significant reduction of the depletion region width (down to 2 nm), with carrier tunneling and hopping becoming the dominant mechanisms responsible for the SPV transients. To verify this assumption, the near-surface defective region (about 40 nm) has been removed through the ICP-RIE process. After the etching, the SPV transients became fast and increased in magnitude by about 0.6 eV. By using the thermionic model, band bending was estimated to be -1 eV.
3

Pump-probe spectroscopy of photovoltaic materials

Spencer, Ben January 2011 (has links)
The study of photovoltaic materials is important so as to develop new solar energy technologies: in particular, quantum-confined semiconductors could offer increased quantum efficiencies at a much lower manufacture cost. This thesis contains results from a number of pump-probe experiments designed to probe the carrier dynamics in bulk and quantum-confined photovoltaics. A THz time-domain spectrometer was designed, built and commissioned. The THz refractive indices and absorption coefficients of toluene and hexane were determined, and the spectrometer was benchmarked using a photoexcited GaAs wafer. Results are presented of time-resolved THz spectroscopy of photoexcited bulk InP as a function of laser excitation wavelength. These data were used to extract the quantum efficiency of bulk InP in order to compare with recent results for InP quantum dots. The quantum efficiency in quantum dots increases when the incident photon energy is at least twice the band gap energy, whereasthe efficiency of the bulk material is found to decrease. This is because of surface recombination, and these measurements therefore verify the potential superiority of quantum dot materials over bulk materials for use in solar energy applications. Initial measurements of quantum dots using THz spectroscopy highlighted the various experimental challenges involved and the upgrades required to study such samples in the future.The time-dependence of the photoinduced surface photovoltage (SPV) in Si was studied on nanosecond timescales by synchronizing an ultrafast laser system to a synchrotron radiation source (the SRS at Daresbury, UK), and measuring the resulting shift in the photoelectron spectrum. The equilibrium band bending was determined, and the decay of the SPV was attributed to the recombination of charge carriers across the band gap. Results are presented for the SPV in bulk ZnO and for PbS quantum dot chemically attached to ZnO. The fact that the PbS quantum dots were chemically attached to the surface without becoming oxidized was verified using X-ray photoelectron spectroscopy (XPS). The changes caused by photoexcitation occur on much longer timescales in ZnO than Si (sub-milliseconds rather than nanoseconds), and these timescales were conveniently accessed using the time-resolved XPS facility at the TEMPO beamline at Synchrotron SOLEIL (Paris, France). This is due to oxygen adsorption and desorption processes at the ZnO surface affectingthe transfer of charge carriers. The addition of PbS quantum dots to the ZnO surface was found to increase the speed of this charge transfer due to injection of carriers directly from the PbS quantum dot to the bulk ZnO conduction band.
4

The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces

Hickey, Stephen G. 27 April 2018 (has links)
Yes / The application of photoelectrochemical methods presents the researcher with a powerful set of versatile tools by which photoactive materials, such as semiconductor quantum dots, at conductive interfaces may be interrogated. While the range of photoelectrochemical techniques available is quite large, it is surprising that very few have found their way into common usage within the nanoparticle community. Here a number of photoelectrochemical techniques and the principles upon which they are based are introduced. A short discussion on the criticality of ensuring the nanoparticles are reliably anchored to the substrate is followed by an introduction to the basic set of equipment required in order to enable the investigator to undertake such experiments. Subsequently the four techniques of transient photocurrent response to square wave illumination, photocurrent spectroscopy, intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS) are introduced. Finally, the information that can be acquired using such techniques is provided with emphasis being placed on a number of case studies exemplifying the application of photoelectrochemical techniques to nanoparticles at interfaces, in particular optically transparent electrodes.
5

Étude électro-optique de l'interface n-alcanethiols GaAs(001) les phénomènes de surface et les applications en bio-détection à base de photoluminescence / Electro-optic investigation of the n-alkanethiol GaAs(001) interface : surface phenomena and applications to photoluminescence-based biosensing

Marshall, Gregory M January 2011 (has links)
Semiconductor surfaces coupled to molecular structures derived from organic chemistry form the basis of an emerging class of field-effect devices. In addition to molecular electronics research, these interfaces are developed for a variety of sensor applications in the electronic and optical domains. Of practical interest are self-assembled monolayers (SAMs) comprised of n-alkanethiols [HS(CH[subscript 2])[subscript n]R], which couple to the GaAs(001) surface through S-GaAs covalent bond formation. These SAMs offer potential functionality in terms of the requisite sensor chemistry and the passivation effect such coupling is known to afford. In this thesis, the SAM-GaAs interface is investigated in the context of a photonic biosensor based on photoluminescence (PL) variation. The scope of the work is categorized into three parts: i) the structural and compositional analysis of the surface using X-ray photoelectron spectroscopy (XPS), ii) the investigation of electronic properties at the interface under equilibrium conditions using infrared (IR) spectroscopy, the Kelvin probe method, and XPS, and iii) the analysis of the electro-optic response under steady-state photonic excitation, specifically, the surface photovoltage (SPV) and PL intensity. Using a partial overlayer model of angle-resolved XPS spectra in which the component assignments are shown to be quantitatively valid, the coverage fraction of methyl-terminated SAMs is shown to exceed 90%. Notable among the findings are a low-oxide, Ga-rich surface with elemental As present in sub-monolayer quantities consistent with theoretical surface morphologies. Modal analysis of transmission IR spectra show that the SAM molecular order is sufficient to support a Beer-Lambert determination of the IR optical constants, which yields the observation of a SAM-specific absorbance enhancement. By correlation of the IR absorbance with the SAM dipole layer potential, the enhancement mechanism is attributed to the vibrational moments added by the electronic polarizability in the static field of the SAM. Lastly, the surface Fermi level position is determined by XPS and is used to interpret SPV results in terms of a thiol-induced reduction of the surface cross-section for minority carrier-capture. Numerical analysis confirms this result based on the carrier transport theory of PL intensity by means of a reduction of the surface recombination velocity.
6

Charakterizace materiálů pro perovskitové solární články transientními metodami / Characterization of perovskite solar cell materials by transient techniques

Nakládal, Martin January 2020 (has links)
This thesis deals with the study of the lifetime of charge carriers in perovskite single crystals. The principle of perovskite solar cells is formulated, their main structures are characterized and the history of the development of perovskite solar cells is summarized, especially in terms of efficiency. The properties of perovskite single crystals with perovskite solar cells are compared. For measurement purposes, transient methods, impedance spectroscopy, load characteristics and the dependence of sensitivity and photocurrent on the wavelength of incident radiation are described. The practical part deals with the method of measuring and evaluating the lifetime of charge carriers in the investigated perovskite single crystals.
7

Nanoscale Characterization of Defects in Complex Oxides and Germanane

Asel, Thaddeus J. 13 September 2018 (has links)
No description available.
8

Photon-assisted spectroscopy of electronic interface states in perovskite oxide heterostructures / Photonengestützte Spektroskopie elektronischer Grenzflächenzustände in Heterostrukturen perowskitischer Oxide

Beyreuther, Elke 19 December 2007 (has links) (PDF)
Complex oxides are an intriguing field of solid-state research, as they can exhibit a wide variety of functional properties, such as ferroelasticity, ferroelectricity, ferro- and antiferromagnetism or an even more complicated type of magnetic ordering, the combination or interaction of those ferroic properties (multiferroicity), high spin polarization, or high-temperature superconductivity. Thus they are prospective candidates for future materials in microelectronics. It is a matter of fact that the performance of such oxide-based devices depends mainly on transport properties, which in turn depend on the distribution and density of intrinsic or extrinsic electronic interface states across the device structure. The present thesis focuses on the identification and characterization of such electronic properties by two different photoassisted spectroscopy techniques: surface photovoltage spectroscopy and photoelectron spectroscopy. This work especially deals with perovskite oxides, namely with the model perovskite strontium titanate (SrTiO3) as a substrate and three differently doped lanthanum manganite thin films (10-15 nm thickness) grown by pulsed laser deposition (PLD) on the SrTiO3 substrate(La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). The first part aims at the identification of electronic surface and interface states at the free SrTiO3 surface as well as at the three different lanthanum manganite/SrTiO3 interfaces. For that purpose three different experimental realizations of the surface photovoltage spectroscopy technique were implemented and employed: photoelectron spectroscopy under additional optical excitation, the capacitive detection of the photoinduced displacement current in a parallel-plate capacitor geometry under modulated optical excitation, and the classical Kelvin probe technique. The methods are evaluated comparatively with respect to their suitability to analyze the given oxidic interfaces. The main result of this first part is a map of the energetic positions and relaxation time constants of the surface states at the SrTiO3 surface as well as of the interface states at the lanthanum manganite/SrTiO3 interfaces within the SrTiO3 bandgap. The interface states were classified into film- and substrate-induced states and it could be demonstrated that an appropriate annealing procedure can dramatically decrease their densities. The second part tackles the problem of the manganese valence and the doping type of di- and tetravalent-ion-doped LaMnO3. The question whether the insulating parent compound LaMnO3 becomes an electron-doped semiconductor after doping with tetravalent cations such as Ce4+ - which would be in analogy to the well-established hole doping after partial substitution of La3+ by divalent cations such as Sr2+ or Ca2+ - has been discussed controversially in the literature so far. Due to the physics of the manganite crystal lattice the question can also be formulated in a different way: Can part of the manganese ions be driven from the Mn3+ state towards the Mn2+ state without any crystal instabilities or phase separation phenomena? In order to contribute to the clarification of this question, an extensive X-ray- and UV-photoelectron spectroscopy (XPS/UPS) investigation was performed. The three differently doped lanthanum manganite thin films were comparatively studied considering the exchange splitting of the Mn 3s core level line, which is a linear function of the Mn valence, as measured by XPS and the work function as extracted from UPS. All measurements were performed at different states of deoxygenation after heating in ultrahigh vacuum and reoxidation after heating in a pure oxygen atmosphere. Strong evidence for electron doping of the La0.7Ce0.3MnO3 film after deoxygenation was found. Furthermore, the reversible tunability of the Mn valence by variation of the oxygen content could be demonstrated for both tetravalent- and divalent-ion-doped lanthanum manganite films. / Oxidische Komplexverbindungen können eine Vielzahl an funktionellen Eigenschaften, wie z.B. Ferroelastizität, Ferroelektrizität, Ferro- und Antiferromagnetismus sowie kompliziertere magnetische Ordnungen, die Kombination und Interaktion solcher ferroischer Eigenschaften (Multiferroizität), hohe Spinpolarisation oder Hochtemperatursupraleitung aufweisen und gelten daher als aussichtsreiche Materialien für die zukünftige Mikroelektronik. Entscheidend für die Funktionsfähigkeit oxidischer Bauelemente sind deren elektronische Transporteigenschaften, die in äußerst sensibler Weise von der Verteilung und Dichte von ex- oder intrinsischen elektronischen Defektzuständen an Grenz- und Oberflächen innerhalb der Bauelementstruktur abhängen. Die vorliegende Arbeit beschäftigt sich mit der Spektroskopie solcher elektronischer Eigenschaften mittels photonenbasierter Methoden. Im Fokus stehen dabei perowskitische Oxide , speziell das Modellperowskit Strontiumtitanat (SrTiO3) als Substrat und darauf mittels gepulster Laserdeposition (PLD) abgeschiedene dünne Filme (10-15 nm Dicke) dotierter Lanthanmanganate (La0.7Sr0.3MnO, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). Im Rahmen einer halbleiterphysikalischen Interpretation widmet sich der erste Teilder Identifikation elektronischer Ober- und Grenzflächenzustände an der SrTiO3-Oberfläche sowie an verschiedenen Lanthanmanganat/SrTiO3-Grenzflächen mittels dreier unterschiedlicher experimenteller Methoden zur Vermessung der Oberflächenphotospannung: der Photoelektronenspektroskopie unter zusätzlicher optischer Anregung, einer kapazitiven Detektionsmethode in Plattenkondensatorgeometrie unter modulierter optischer Anregung und der optischen Kelvin-Sonde. Neben einem auf die bei oxidischen Ober- und Grenzflächen auftretenden besonderen Herausforderungen zugeschnittenen Methodenvergleich werden Grenzflächenzustände bezüglich ihrer energetischen Position in der Bandlücke des SrTiO3 und ihres Relaxationsverhaltens analysiert, als substrat- oder filminduziert klassifiziert, und die Verringerung ihrer Dichte nach geeigneter Ausheilprozedur wird nachgewiesen. Der zweite Teil der Arbeit befasst sich mit der in der Literatur bisher kontrovers diskutierten Frage, ob sich die isolierende Stammverbindung LaMnO3 durch Dotierung mit tetravalenten Kationen, wie z.B. Ce4+, in einen elektronendotierten Halbleiter verwandeln lässt - analog zur Herstellung lochdotierter Lanthanmanganate durch Dotierung mit divalenten Kationen, wie z.B. Sr2+ oder Ca2+. Die Frage ist äquivalent zur Betrachtung, ob unter Beibehaltung der Stabilität des Kristallgitters ein Teil der Manganionen vom Mn3+-Zustand in den Mn2+-Zustand übergehen kann. Um einen Beitrag zur Klärung dieses Problems zu leisten, wurden als elektronisch sensitive Methoden die Röntgen- und UV-Photoelektronenspektroskopie (XPS/UPS) gewählt. Die oben genannten Lanthanmanganatfilme wurden dazu hinsichtlich der Austauschaufspaltung der Mangan-3s-Linie im XP-Spektrum, die in linearer Weise von der Manganvalenz abhängt, und der anhand der Breite des UP-Spektrums ermittelten Austrittsarbeit jeweils nach Reinigung der Oberfläche im Ultrahochvakuum (UHV) vergleichend untersucht. Die Messungen wurden nach unterschiedlich starker Desoxidation durch Heizen im UHV und Reoxidierung durch Heizen in Sauerstoffatmosphäre durchgeführt. Es konnte nachgewiesen werden, dass eine Elektronendotierung des La0.7Ce0.3MnO3-Films bei geeigneter Einstellung des Sauerstoffgehalts tatsächlich möglich ist. Außerdem wurde gezeigt, dass sich sowohl in di- als auch in tetravalent dotierten Lanthanmanganatfilmen die Manganvalenz und damit der Dotierungstyp reversibel durchstimmen lässt.
9

Optical Excitation in Scanning Tunneling Microscopy: From Surface Photovoltages to Charge Dynamics oin the Atomic Scale

Kloth, Philipp 15 December 2016 (has links)
No description available.
10

Photon-assisted spectroscopy of electronic interface states in perovskite oxide heterostructures

Beyreuther, Elke 10 December 2007 (has links)
Complex oxides are an intriguing field of solid-state research, as they can exhibit a wide variety of functional properties, such as ferroelasticity, ferroelectricity, ferro- and antiferromagnetism or an even more complicated type of magnetic ordering, the combination or interaction of those ferroic properties (multiferroicity), high spin polarization, or high-temperature superconductivity. Thus they are prospective candidates for future materials in microelectronics. It is a matter of fact that the performance of such oxide-based devices depends mainly on transport properties, which in turn depend on the distribution and density of intrinsic or extrinsic electronic interface states across the device structure. The present thesis focuses on the identification and characterization of such electronic properties by two different photoassisted spectroscopy techniques: surface photovoltage spectroscopy and photoelectron spectroscopy. This work especially deals with perovskite oxides, namely with the model perovskite strontium titanate (SrTiO3) as a substrate and three differently doped lanthanum manganite thin films (10-15 nm thickness) grown by pulsed laser deposition (PLD) on the SrTiO3 substrate(La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). The first part aims at the identification of electronic surface and interface states at the free SrTiO3 surface as well as at the three different lanthanum manganite/SrTiO3 interfaces. For that purpose three different experimental realizations of the surface photovoltage spectroscopy technique were implemented and employed: photoelectron spectroscopy under additional optical excitation, the capacitive detection of the photoinduced displacement current in a parallel-plate capacitor geometry under modulated optical excitation, and the classical Kelvin probe technique. The methods are evaluated comparatively with respect to their suitability to analyze the given oxidic interfaces. The main result of this first part is a map of the energetic positions and relaxation time constants of the surface states at the SrTiO3 surface as well as of the interface states at the lanthanum manganite/SrTiO3 interfaces within the SrTiO3 bandgap. The interface states were classified into film- and substrate-induced states and it could be demonstrated that an appropriate annealing procedure can dramatically decrease their densities. The second part tackles the problem of the manganese valence and the doping type of di- and tetravalent-ion-doped LaMnO3. The question whether the insulating parent compound LaMnO3 becomes an electron-doped semiconductor after doping with tetravalent cations such as Ce4+ - which would be in analogy to the well-established hole doping after partial substitution of La3+ by divalent cations such as Sr2+ or Ca2+ - has been discussed controversially in the literature so far. Due to the physics of the manganite crystal lattice the question can also be formulated in a different way: Can part of the manganese ions be driven from the Mn3+ state towards the Mn2+ state without any crystal instabilities or phase separation phenomena? In order to contribute to the clarification of this question, an extensive X-ray- and UV-photoelectron spectroscopy (XPS/UPS) investigation was performed. The three differently doped lanthanum manganite thin films were comparatively studied considering the exchange splitting of the Mn 3s core level line, which is a linear function of the Mn valence, as measured by XPS and the work function as extracted from UPS. All measurements were performed at different states of deoxygenation after heating in ultrahigh vacuum and reoxidation after heating in a pure oxygen atmosphere. Strong evidence for electron doping of the La0.7Ce0.3MnO3 film after deoxygenation was found. Furthermore, the reversible tunability of the Mn valence by variation of the oxygen content could be demonstrated for both tetravalent- and divalent-ion-doped lanthanum manganite films. / Oxidische Komplexverbindungen können eine Vielzahl an funktionellen Eigenschaften, wie z.B. Ferroelastizität, Ferroelektrizität, Ferro- und Antiferromagnetismus sowie kompliziertere magnetische Ordnungen, die Kombination und Interaktion solcher ferroischer Eigenschaften (Multiferroizität), hohe Spinpolarisation oder Hochtemperatursupraleitung aufweisen und gelten daher als aussichtsreiche Materialien für die zukünftige Mikroelektronik. Entscheidend für die Funktionsfähigkeit oxidischer Bauelemente sind deren elektronische Transporteigenschaften, die in äußerst sensibler Weise von der Verteilung und Dichte von ex- oder intrinsischen elektronischen Defektzuständen an Grenz- und Oberflächen innerhalb der Bauelementstruktur abhängen. Die vorliegende Arbeit beschäftigt sich mit der Spektroskopie solcher elektronischer Eigenschaften mittels photonenbasierter Methoden. Im Fokus stehen dabei perowskitische Oxide , speziell das Modellperowskit Strontiumtitanat (SrTiO3) als Substrat und darauf mittels gepulster Laserdeposition (PLD) abgeschiedene dünne Filme (10-15 nm Dicke) dotierter Lanthanmanganate (La0.7Sr0.3MnO, La0.7Ca0.3MnO3, La0.7Ce0.3MnO3). Im Rahmen einer halbleiterphysikalischen Interpretation widmet sich der erste Teilder Identifikation elektronischer Ober- und Grenzflächenzustände an der SrTiO3-Oberfläche sowie an verschiedenen Lanthanmanganat/SrTiO3-Grenzflächen mittels dreier unterschiedlicher experimenteller Methoden zur Vermessung der Oberflächenphotospannung: der Photoelektronenspektroskopie unter zusätzlicher optischer Anregung, einer kapazitiven Detektionsmethode in Plattenkondensatorgeometrie unter modulierter optischer Anregung und der optischen Kelvin-Sonde. Neben einem auf die bei oxidischen Ober- und Grenzflächen auftretenden besonderen Herausforderungen zugeschnittenen Methodenvergleich werden Grenzflächenzustände bezüglich ihrer energetischen Position in der Bandlücke des SrTiO3 und ihres Relaxationsverhaltens analysiert, als substrat- oder filminduziert klassifiziert, und die Verringerung ihrer Dichte nach geeigneter Ausheilprozedur wird nachgewiesen. Der zweite Teil der Arbeit befasst sich mit der in der Literatur bisher kontrovers diskutierten Frage, ob sich die isolierende Stammverbindung LaMnO3 durch Dotierung mit tetravalenten Kationen, wie z.B. Ce4+, in einen elektronendotierten Halbleiter verwandeln lässt - analog zur Herstellung lochdotierter Lanthanmanganate durch Dotierung mit divalenten Kationen, wie z.B. Sr2+ oder Ca2+. Die Frage ist äquivalent zur Betrachtung, ob unter Beibehaltung der Stabilität des Kristallgitters ein Teil der Manganionen vom Mn3+-Zustand in den Mn2+-Zustand übergehen kann. Um einen Beitrag zur Klärung dieses Problems zu leisten, wurden als elektronisch sensitive Methoden die Röntgen- und UV-Photoelektronenspektroskopie (XPS/UPS) gewählt. Die oben genannten Lanthanmanganatfilme wurden dazu hinsichtlich der Austauschaufspaltung der Mangan-3s-Linie im XP-Spektrum, die in linearer Weise von der Manganvalenz abhängt, und der anhand der Breite des UP-Spektrums ermittelten Austrittsarbeit jeweils nach Reinigung der Oberfläche im Ultrahochvakuum (UHV) vergleichend untersucht. Die Messungen wurden nach unterschiedlich starker Desoxidation durch Heizen im UHV und Reoxidierung durch Heizen in Sauerstoffatmosphäre durchgeführt. Es konnte nachgewiesen werden, dass eine Elektronendotierung des La0.7Ce0.3MnO3-Films bei geeigneter Einstellung des Sauerstoffgehalts tatsächlich möglich ist. Außerdem wurde gezeigt, dass sich sowohl in di- als auch in tetravalent dotierten Lanthanmanganatfilmen die Manganvalenz und damit der Dotierungstyp reversibel durchstimmen lässt.

Page generated in 0.046 seconds