• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 3
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 12
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Gas transport properties in polycarbonate - Influence of the cooling rate, physical aging, and orientation

Laot, Christelle Marie 03 December 2001 (has links)
The objective of this research work was to understand the molecular mechanism of gas transport through amorphous glassy polymers. Especially, emphasis was placed on determining whether or not gas transport in amorphous glassy polymers is directly correlated with the free volume content. Free volume arguments are indeed commonly used to explain the gas transport process. The gas transport properties of bisphenol-A polycarbonate films were examined as a function of the cooling rate, physical aging, and orientation. Such conditions affect the free volume content and its size and shape distribution. Results obtained from permeation experiments were accompanied with dynamic mechanical and density measurements. The experimental results suggest that the diffusion coefficient of small gas molecules in glassy polycarbonate is influenced by the local dynamics or mobility of the polymer chains rather than by the overall free volume content. Indeed, the diffusion coefficient of nitrogen for instance was reduced in fast-cooled samples, despite of the fact that those samples possessed a greater overall free volume content. Fast cooling rates may generate highly restricted conformations which hinder local motions, and therefore tend to increase the activation energy of diffusion. As expected, the greater the free volume content, the greater was the solubility coefficient. The increase in the polymer relaxation times with aging time is believed to restrict the local chain motions, leading to enhanced activation energies of diffusion, and therefore to reduced diffusion coefficients. The change in the solubility coefficients with physical aging revealed that the aging process might not affect all the cavity sizes in polycarbonate equally. According to free volume arguments, one would anticipate that the physical aging of fast-cooled samples (which possess more free volume) should be enhanced compared to that of slowly-cooled samples. Quite interestingly, the decrease in the diffusion coefficient with aging was found to occur much slower in fast-cooled samples, despite of the higher initial free volume content. In contrast, properties directly related to the free volume content, such as density or isothermal DMTA measurements actually showed a greater aging rate in the sample containing the greatest amount of free volume. Slow-cooled samples that are in a low energy conformational state may loose their internal degrees of freedom more rapidly, due to the closer interchain packing and the possibly restricted segmental motions. Studies dealing with orientation and gas transport were complicated by several factors. For instance the fact that the permeation experiments were performed perpendicularly to the orientation of the chains and not along the orientation axis limited the sensitivity of the gas transport properties to orientation. This work points out that dynamic rather than static models should be developed to predict the gas transport phenomenon. / Ph. D.
22

Physical Aging of Miscible Polymer Blends

Robertson, Christopher G. 07 January 2000 (has links)
Physical aging measurements were performed on various polymeric glasses with the overriding goal of developing a better molecular picture of the nonequilibrium glassy state. To this end, aging-induced changes in mechanical properties and in the thermodynamic state (volume and enthalpy) were assessed for two different miscible polymer blends as a function of both composition and aging temperature. This investigation considered the physical aging behavior of blends containing atactic polystyrene (a-PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) as well as mixtures of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). Substantial attractive chemical interactions are characteristic of a-PS/PPO blends but are absent in PMMA/SAN blends. The distinct nature of interactions for these two blends resulted in differences in the compositional dependence of secondary relaxation intensity, segmental cooperativity which dictates glass formation kinetics, and density (prior to aging). The variation of volume relaxation rate with aging temperature and composition was interpreted based upon these characteristics for the two systems. In addition, a general relationship was uncovered which linked structural relaxation rates for amorphous polymers to their respective segmental relaxation characteristics (glass transition cooperativity or fragility), which in turn are well understood from a molecular standpoint. This work, therefore, established a basis for comprehending glassy state volume and enthalpy relaxation rates based upon molecular characteristics. Developing an understanding of the connection between the evolving thermodynamic state and mechanical property changes fared less well. The fact that the thermodynamic and mechanical properties can have very different relaxation time responses governing their changes in the nonequilibrium glassy state was clearly evident in an extensive study of the physical aging characteristics of an amorphous polyimide material. For some materials, interpretation of mechanical aging behavior was obscured by thermorheological complexity arising due to overlap of a secondary relaxation with the main chain softening dispersion. / Ph. D.
23

The Effects of Structure, Humidity and Aging on the Mechanical Properties of Polymeric Ionomers for Fuel Cell Applications

Uan-Zo-li, Julie Tammy 19 December 2001 (has links)
The purpose of this work was to investigate the effects of structure, humidity and aging on the mechanical behavior of Nafion® and Dais® ionomers. It was determined that the majority of the properties of these membranes were controlled by the formation and growth of the ionic clusters that were the direct result of the ionic nature of these materials. In the process of this study, the properties of Nafion® and sulfonated Dais® polymers were investigated by dynamic mechanical analysis and thermal gravimetric analysis and their water uptake and sorption and desorption isotherms were measured. A mastercurve and a shift factor plot were constructed for 60% sulfonated Dais® membrane. It was determined that an increase in the degree of sulfonation raised the glass transition temperature of these materials by facilitating the formation of the ionic clusters which acted as physical crosslinks, thereby reducing the mobility of polymeric chains. Water was found to effectively plasticize the membranes, especially in the case of Dais® materials, by reducing the storage modulus and decreasing the structural integrity of the ionomers. The effect of pre-treatment of Nafion® was investigated and the glass transition temperature was found to increase as a function of the severity of the treatment procedure. The maximum water uptakes were determined for virgin and aged Nafion® and Dais® membranes and their vapor phase water sorption diffusion coefficients were calculated. The sorption process was found to follow pseudo-Fickian behavior, while the movement of water out of the membranes during the desorption process was determined to be controlled by mechanisms other than diffusion. Lastly, the effect of exposure of Nafion® and 30% sulfonated Dais® membranes to the saturated environment at elevated temperatures was investigated and found to result in the increase in the glass transition temperature of the materials. Results of the exposure effects on the diffusion properties of Nafion® and Dais® were inconclusive. Preliminary findings attributed the changes in the properties of the materials to the counteractive actions of physical aging and the growth of the ionic clusters. / Master of Science
24

Sugar reduction in extruded cereal based products : impact of water content on the structure and molecular dynamics in such material / Réduction du sucre dans les produits extrudes à base de céréales : impacts de la quantité d'eau sur la structure et la dynamique moléculaire sur ces produits

Masavang, Supuksorn 29 August 2019 (has links)
Les systèmes à base de biopolymères à faible teneur en humidité sont couramment rencontrés dans les aliments. Bien entendu, il est primordial de comprendre les bases physiques de leur qualité: texture, performances dans le temps ou en fonction de leur composition. Le vieillissement physique des systèmes composites rend les changements survenant dans le stockage des produits comestibles difficiles à prévoir. Les objectifs de ce travail étaient d'évaluer l'incidence de la présence de saccharose et de la teneur en eau de fabrication sur les propriétés physico-chimiques du produit fini. La stabilité physique de ces matériaux a été contrôlée grâce à une étude à différentes échelles moléculaires. Ensuite, les relations entre les données multi-échelles ont été examinées. L'effet du saccharose (0 à 20%) et de l'eau d'alimentation (10 et 15%) sur les mélanges d'extrusion a été étudié à l'aide d'un extrudeur double vis conduit dans les mêmes conditions. Les propriétés physiques et microstructurales des produits extrudés expansés ont été examinées sous diverses conditions d'humidité relative. La réduction des teneurs en sucre et en eau d’alimentation a fait augmenter la pression et l’énergie mécanique spécifique, ce qui a réduit la dégradation de l’amidon et augmenté la viscosité dans l’extrudeur en particulier à la teneur en eau la plus élevée. L'augmentation de la pression dans l’extrudeur a entraîné une expansion plus importante des extrudés. Par contre, la technique d'imagerie neutronique montré que le saccharose réduisait la taille des pores, et donc augmentait la densité apparente et ce qui était particulièrement évident en utilisant. Cette technique a été appliquée pour la première fois sur des produits extrudés. Les images de tomographie 2D ont indiqué des différences structurelles internes entre les extrudés à différentes teneurs en saccharose et stockés à humidité relative différente. Toutefois, l'analyse d'images 3D a montré que l'impact de ces facteurs sur la distribution de la taille des pores et le taux de porosité n'était pas significatif. En fin d'extrusion, les échantillons étaient à l'état amorphe à la suite de la gélatinisation de l'amidon et de la fonte du sucre. Leursrs propriétés thermiques ont été analysées par analyse enthalpique différentielle (AED) et les températures e transition vitreuse ont été étudiées. Les thermogrammess d’AED ont été minutieusement étudiés via une déconvolution de la dérivée première de la variation d’enthalpie. Cette approche a mis en évidence que les systèmes composites étudiés présentaient des phases multiples avec des transitions vitreuses distinctes. Ces dernières sont associées à une phase riche en polymère (amidon principalement) et / ou à une phase riche en plastifiant (sucre) dont le comportement dépendait de la teneur en eau de l'échantillon. Les isothermes de sorption ont montré qu’aux faibles Aw et pour une valeur donnée, a la teneur en eau des extrudés diminuait avec l’augmentation des teneurs en saccharose et que l'effet inverse était observé aux aw élevées. L’étude de la cinétique apparente de lala diffusion de l'eau a mis en évidence deux sites de sorption différents. Le premier est caractérisé par une cinétique quasi constante qui pourrait correspondre à un phénomène d'adsorption à la surface. Le second site présente d’abord un ralentissement initial de la cinétique de sorption, tandis qu’une forte augmentation est constatée lorsque la teneur en eau était plus élevée. Ce comportement peut être lié à un effondrement de la structure. Une étude par RMN à cyclage de champ rapide à basse fréquence a montré que les temps de relaxation dépendaient de la teneur en saccharose et en eau. Une carte de stabilité a été tracée pour modéliser les évolutions rhéologiques des matrices avec la teneur en eau en lien avec les transitions de phases des matériaux (...). / Low-moisture biopolymer-based systems are commonly encountered in food. Obviously, understanding the physical basis of their quality: e.g texture, or performance over time or as a function of their composition is of primary importance. The objectives of this work were to evaluate how the presence of sucrose and water content affects physico-chemical properties. The physical stability of these materials were monitored through an insight at different molecular scales. Then the relations between the multi-scale studies were investigated. The effect of sucrose (0–20%) and feed water (10 and 15%) on extrusion blends was studied using a twin screw extruder under the same processing settings. The physical and microstructural properties of extruded products were examined at various RH. Reducing both sugar levels and feed water increased die pressure and specific mechanical energy, as a consequence, it reduced starch degradation and increased in viscosity. The effect was more pronounced with increasing feed water content. The increased die pressure resulted in higher expansion of the porous extrudates. Sucrose was shown to increase the bulk density and reduce the pore size, this was particularly evident by using neutron imaging technique. This technique was applied for the first time in extrudate. 2D tomography images indicated internal structural differences between extrudates containing different sucrose content and stored at low and high % RH, while 3D image analysis showed impact of these factors on pore size distribution and % porosity were not significant. The extruded samples were in the amorphous state as a result of starch gelatinization and sugar melting. Their thermal properties were analyzed with DSC and their Tg were studied. The DSC thermograms were thoroughly studied through a Gaussian deconvolution of the first derivative of their heat low. This approach evidenced a multiple phase behavior with different glass transitions in composite systems. They were associated with either a polymer-rich phase and/or a plasticizer-rich phase which behavior depended on the sample water content. Physical aging accompanied with an increase in rigidity at low aw, resulted in an increased bulk density and more pronounced with increasing sucrose content. Sorption isotherms showed the water content of extrudates decreased when product contains high sucrose at low aw range and the inverse effect was observed at high aw. Apparent kinetics of water diffusion showed two different sorption sites, the first kinetics was almost constant and could be adsorption phenomena at the surface. The second one reflected first an initial slowing in dynamics whereas a sharp increase was found at higher water content. Addition of sucrose or water decreased both Tgs in extrudates. Young's modulus showed water acts as anti-plasticizer at low aw, while it shows a plasticizing effect at high aw. A stability map can explain the brittle-ductile transition occurred below Tg. Fast field cycling NMR study at low frequency highlighted that T1 depended on sucrose and water content. T1 and T2 measured using Low field NMR decrease as a function of water content, while the impact pf sucrose were not significant. T2 showing a minimum probably indicating the exchange of protons of water and macromolecules in composite system. The impact of sucrose content was not significant for T1 and for T2 at low water content. FFC NMR showed T1 results consistent with the LF NMR measurement.In conclusion, physicochemical studies of the influence of water and sucrose content on glassy materials showed that the material properties can be investigated at different levels from the macro- to the microscopic scale and these results clearly presented the need for complementary techniques to probe the dynamics in the glassy state of heterogeneous food systems that could be facilitated to manage the stability during storage of this type of dry products.
25

Thickness dependent physical aging and supercritical carbon dioxide conditioning effects on crosslinkable polyimide membranes for natural gas purification

Kratochvil, Adam Michal 30 June 2008 (has links)
Membrane separations are rapidly growing alternatives to traditionally expensive gas separation processes. For natural gas purification, membranes are used to remove carbon dioxide to prevent pipeline corrosion and increase the heating value of the natural gas. The robust chemical and physical properties of polyimide membranes make them ideal for the numerous components and high pressures associated with natural gas production. Typically, the performance of membranes changes over time as a result of physical aging of the polymer. Previous work shows that the thin selective layer of an asymmetric hollow fiber membrane, the morphology of choice for gas separations, ages differently than a thick dense film of the same material. Also, carbon dioxide, which is highly soluble in most polymers, can actively swell and plasticize polymer membranes at higher pressures. In this work, free acid groups present in the model polyimide are covalently crosslinked to stabilize the matrix against plasticization. Physical aging of two different crosslinked derivatives are compared to the free acid polyimide through gas permeation, gas sorption, and refractive index measurements. Thick (~50 m) and thin (~650 nm) films are examined to determine the effects of sample dimension on physical aging. The crosslinking mechanism employs diol substituents to form ester linkages through the free acid group. However, the annealing treatment, above the glass transition temperature, used to "reset" the thermal history of the films is found to form a new crosslinked polymer. Characterization of this new crosslinking mechanism reveals a high-temperature decarboxylation of the free acid creates free-radical phenyl groups which form covalent crosslinks through other portions of the polymer structure. Since ester crosslinks may be vulnerable to hydrolysis in aggressive gas feed streams, this new mechanism of crosslinking may create a more robust membrane for aggressive separations. In addition to the physical aging study, supercritical carbon dioxide conditioning of the two glycol crosslinked polyimides is compared to the free acid polymer. In this case, the free acid polymer is not crosslinked since the esterification crosslinking reaction occurs at much lower temperature than the decarboxylation mechanism. The free acid polymer displays an atypical permeation response under supercritical carbon dioxide conditions which suggests a structural reorganization of the polymer occurs. The crosslinked polymers do not exhibit this type of response. Mixed gas permeation confirms a substantial decrease in the productivity of the free acid polyimide and reveals the enhanced stability of the crosslinked polyimides following the supercritical carbon dioxide conditioning. Finally, examination of structurally similar fluorine-containing polyimides following approximately 18 years of aging allows the study of polymer structure on physical aging. A 6FDA-based polyimide is compared to a BPDA-based polyimide to understand the effects of bulky, CF3 groups on physical aging, and polyimides with diamine isomers reveal the effects of structural symmetry on physical aging.
26

The effect of physical aging, starch particle size, and starch oxidation on thermal-mechanical properties of poly(lactic acid)/starch composites

Moura, Ricardo Acioli January 1900 (has links)
Doctor of Philosophy / Department of Grain Science and Industry / X. Susan Sun / Poly(lactic acid) (PLA), a synthetic biopolymer, is a promising substitute of some petroleum-based polymers due to its mechanical and biodegradable properties. But, because of the high cost of PLA (compared to those petroleum plastics for disposable application), starch has been incorporated into PLA to reduce cost and accelerate the biodegradability rate of the composites. But, the addition of starch as filler to PLA decreased mechanical performance of the composite. The addition of methylenediphenyl diisocyanate (MDI) into PLA/starch blends improved drastically the mechanical properties of the composite. Results from thermal-degradation analysis showed that PLA had the highest Arrhenius activation energy and strongest thermal endurance of all samples, followed by PLA/starch/MDI and PLA/starch. Aged samples exposed to fluctuating humidity storage conditions significantly decreased their performance. But, storing the samples in plastic bags could minimize degradation of properties. PLA and its composites with starch would not significantly affect application function when they are stored in controlled environment. PLA and PLA/starch based composites sealed in plastic bags can be stored in fluctuating humidity conditions (30-90% RH) for up to 30 days. Tensile strength, elongation, and damping increased with average particle size of starch granules (APS). But, declination of these properties was detected with APS larger than 45 mm. Crystallinity increased as the APS decreased. Young’s modulus, storage modulus, and moisture absorption were not significantly affected by the starch APS. The use of MDI as a coupling agent altered the role of starch APS on those properties of poly(lactic acid)/starch composite. The oxidation of the primary alcohol group on C6 of starch molecules up to 10% degree of substitution did not significantly affect the mechanical properties of PLA/starch/MDI, but the composites showed a reduced inelastic deformation (tensile curve) and significant increase in storage modulus and damping. Results suggest that a substitution of hydroxyl group on C6 of starch molecules for carboxyl group (up to 10%) increased the strengthening effect of MDI enough to reduce inelastic deformation of the composites upon load, but not enough to enhance mechanical properties.
27

Dielektrická relaxační spektroskopie glycerolu / Dielectric Relaxation Spectroscopy of Glycerol

Stráník, Rostislav January 2008 (has links)
This doctoral thesis deals with the analysis of dielectric spectra of glycerol with dielectric relaxation spectroscopy (DRS). Dielectric spectra of glycerol have been measured in the frequency range 20 Hz to 10 MHz and in the temperature range 10 K to 300 K. The observed dielectric spectra featured a typical relaxation maximum, which could be in the first approximation described by the Arrhenius equation. The activation energy of the relaxation process observed was 90 MJ/kmol. The relaxation strength as well as the shape of the relaxation peak remained in the temperature interval 180 K - 230 K (visibility of peak) almost the same, thus indicating that no change of the relaxation mechanism comes about. Much attention was in the thesis paid to the analysis of the excess component of the relaxation alfa process, in the literature commonly denoted as "excess wing". The thesis puts forward a procedure for the quantification of the magnitude of the excess wing. The excess wing magnitude thus determined turns out to increase monotonously with increasing temperature. The excess wing is here interpreted as a manifestation of a weakly-pronounced beta relaxation.
28

POLYMER CRYSTALLIZATION IN DROPLETS AND CONFINED LAYERS USING MULTILAYERED FILMS

Langhe, Deepak 30 January 2012 (has links)
No description available.
29

Relaxation of PET Orientation at Temperatures Below the Glass Transition

Johnson, Brian Michael January 2013 (has links)
No description available.
30

Effect of intermolecular interactions on the viscoelastic behavior of polyamides / Effet des interactions intermoléculaires sur le comportement viscoélastique des polyamides

Oliveira de Figueiredo Martins, Ana Rita 25 March 2019 (has links)
Les polyamides sont des thermoplastiques techniques qui présentent de bonnes propriétés mécaniques et barrières. Le comportement viscoélastique complet des polyamides est rarement décrit dans la littérature à cause de la présence d'une phase cristalline et à l'instabilité thermique de ces polymères.Dans une première partie, le comportement rhéologique de polyamides amorphes PA 6I avec différentes masses molaires a été étudié. L'augmentation de la masse molaire se traduit par l'apparition d'un plateau caoutchoutique et le décalage du temps de relaxation terminal vers les plus basses fréquences, en accord avec les modèles de Rouse et de reptation. Des interactions ioniques ont été ajoutées au PA 6I en copolymérisant les mêmes monomères avec différents acides isophtaliques substitués, avec des taux de groupements ioniques de 5 à 20 mol%, ce qui entraîne une augmentation de la température de transition vitreuse de 10 à 40°C. Les courbes maîtresses des PA 6I et des copolyamides substitués non enchevêtrés se superposent dans toute la gamme de fréquences en utilisant une température de référence appropriée, proche mais non strictement identique à Tg. Les groupements ioniques ont un effet sur la fragilité dynamique, c'est-à-dire sur la variation en température de la réponse rhéologique près de Tg. Le modèle de Rouse décrit correctement la réponse rhéologique des polyamides non enchevêtrés, montrant que les interactions ioniques n'ont pas d'effet sur la viscoélasticité de ces matériaux. Les polyamides enchevêtrés suivent le modèle de la reptation. La masse entre enchevêtrements augmente avec l'ajout de groupements ioniques dû à une augmentation de la rigidité de la chaîne. La diffusion des rayons-X aux petits angles montre qu'il n'y a pas de ségrégation de domaines ioniques dans les copolyamides non enchevêtrés et une faible ségrégation dans les copolyamides enchevêtrés. L'ajout de liaisons hydrogènes plus fortes se traduit par l'augmentation de la masse entre enchevêtrements et de la Tg sans aucune modification significative dans l'allure des courbes maîtresses qui restent bien décrites par le modèle de Rouse. L'effet des groupements ioniques sur la dynamique à l'état solide (au-dessous de Tg) a été étudié par spectroscopie diélectrique. Les groupements ioniques n'ont pas d'effet sur les relaxations secondaires des polyamides, tandis que la relaxation alpha est décalée comme la Tg mesurée par DSC. Aucune différence n'a été observée entre les copolyamides ioniques et le PA 6I lors de tests de vieillissement physique, démontrant que les groupements ioniques n'introduisent pas d'hétérogénéités dynamiques / Polyamides are engineering thermoplastics which exhibit good mechanical and barrier properties. However, the viscoelastic behavior over the complete range of polyamide relaxation is a topic rarely mentioned in the literature due to the presence of a crystalline phase and lack of thermal stability.The rheological behavior of amorphous PA 6I with increasing molecular weight was studied. As molecular weight increases, a clear rubbery plateau appears and the longest relaxation time is shifted to lower frequencies, as expected by the Rouse and reptation models.Interactions were added to the PA by copolymerizing PA 6I’s monomers with different substituted isophthalic acids. Ionic copolyamides were synthesized in molar fractions from 5 to 20 mol%, inciting an increase of about 10 to 40°C in the glass transition temperature. Master curves of unentangled PA 6I and substituted polyamides, with similar molecular weight, overlap in the complete frequency range using an appropriate reference temperature, which is close to, but not identical to Tg. Ionic groups have an effect on the Angell’s dynamical fragility, i.e. on the temperature variation of the rheological response close to Tg. Dynamic moduli of unentangled polyamides were fitted with Rouse model, showing no effect of hydrogen bonds or ionic groups on the shape of the rheological master curves. The molecular weight between entanglements increases for ionic copolyamides due to an increase of chain rigidity. Small-angle X-ray scattering shows that no segregation of ionic domains occurs in unentangled ionic copolyamides, while entangled copolyamides show only weak segregation.Stronger hydrogen bonding resulted in a decrease of the molecular weight between entanglements. Nevertheless no significant difference was observed in the shape of master curves, which were fitted using the Rouse model.The effect of interacting groups on the local dynamics in the solid state (below Tg) was studied by dielectric spectroscopy. Ionic groups have no effect on secondary relaxations, while alpha-relaxation is shifted accordingly to Tg. No difference was observed between ionic copolyamides and PA 6I during aging experiments, as ionic groups do not act as dynamic heterogeneities, i.e., zones where the local dynamics are heterogeneous due to different local ionic fractions

Page generated in 0.0861 seconds