• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 66
  • 10
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 230
  • 230
  • 53
  • 47
  • 36
  • 30
  • 29
  • 25
  • 24
  • 24
  • 20
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Expression and Purification of Human Lysosomal β-galactosidase from Pichia Pastoris

Tarullo, Sarah E 07 November 2014 (has links) (PDF)
Lysosomal storage diseases are genetically inherited diseases caused by the dysfunction of lysosomal enzymes. In a normal cell, lysosomal enzymes cleave specific macromolecules as they are transported to the lysosome. However, in diseased cells, these lysosomal enzymes are either absent or malfunctioning, causing macromolecular substrates to accumulate, becoming toxic to the cell. Over fifty lysosomal storage diseases have been identified, collectively occurring in one out of 7,700 live births. We investigated the lysosomal enzyme β-galactosidase (β-gal). In order to study the biochemistry and enzymology of this protein a robust expression system was needed. The GLB1 gene has been inserted into Pichia pastoris creating high protein expressing cell lines. The result of this work will yield a high expression system for β-gal, which can then be subjected to structural and biochemical studies.
212

Engineering the N-Glycosylation Pathway in Pichia Pastoris for the Expression of Glycoprotein Hormones

Manoharan, Simna January 2016 (has links) (PDF)
Proteins, participating in a myriad of biological function, are at the core of all cellular activities occurring within living organisms. Therapeutic proteins, hence constitute a major part of the pharmaceutical industry. The glycoprotein hormones follicle stimulating hormone (FSH), luteinizing hormone (LH), thyroid stimulating hormone (TSH) and human chorionic gonadotropin (CG) regulate various reproductive and metabolic functions in humans and hence have high therapeutic potentials. The increasing demand of recombinant proteins for therapeutic uses drives the development of better expression systems. The methylotrophic yeast Pichia pastoris, has been termed as an industrial workhorse for heterologous protein expression. However, the N-glycosylation in yeast is of the high mannose type, resulting in a reduced serum half-life of the recombinant proteins. In the current work, we have re-engineered the Pichia N-glycosylation pathway to mimic the human type of N-glycosylation. Towards this end, we abolished the yeast native N-glycosylation and introduced enzymes from various eukaryotic sources into the system. These modifications resulted in the conversion of the yeast Man9-20GlcNAc2 glycan structure to a more human like GlcNAc2Man3GlcNAc2 form on over 70 % of the heterologous expressed proteins. In order to demonstrate the application of these strains as efficient protein expression hosts, the glycoengineerd Pichia was used for large scale expression of the glycoprotein hormones, hCG and FSH. The purified recombinant hormones were found to have binding affinities and structure similar to that of the natural hormones. These recombinant hormones were also able to elicit over two fold responses in animal models compared to buffer controls and the activity was comparable to the natural counterparts. Thus, we report the generation of a glycoengineered Pichia pastoris, which can be considered as a serious contender for the expression of glycosylated proteins of therapeutic importance.
213

Recombination and Screening of Putative Glucosyltransferase Clone 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 12 August 2012 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradise) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with only a few substrates, and little GT activity was found. Issues of protein localized to inclusion bodies in bacteria are being addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 will be screened for GT activity with different flavonoid subclass representatives and simple phenolics. PGT 4’s significant impact on the biochemical regulation of Citrus paradise will be elucidated with its characterization and determination of PGT 4’s structure and function.
214

Recombination and Screening of Putative Grapefruit Glucosyltransferase 4 in Pichia pastoris

Loftis, Peri, McIntosh, Cecelia A. 04 April 2013 (has links)
Flavonoids are a group of plant secondary metabolites that are vital to the cell systems of plants. The intake of these chemicals is advantageous to animals for their antioxidant properties that affect the function of immune and inflammatory cells. The bitter taste of grapefruit (Citrus paradisi) and other citrus species is caused by the accumulation of glycosylated flavonoids. Glucosyltransferases (GTs) are enzymes that add glucose moieties to a carbon or hydroxyl group of natural products. The function of a putative secondary product GT clone was tested. In previous research, putative GT 4 was cloned into a pCD1 modified pET expression system, heterologously expressed in E.coli, and screened for activity with a few substrates; little GT activity was found. Issues of protein localized to inclusion bodies in bacteria were addressed. PGT 4 is being heterologously expressed in yeast (Pichia pastoris) to allow for protein production and analysis. PGT 4 was screened for GT activity with different flavonoid subclass representatives and simple phenolics.
215

Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid Dioxygenases

Cristea, Mirela January 2006 (has links)
<p>Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases).</p><p>Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus <i>Gaeumannomyces graminis</i>. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones.</p><p>Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast <i>Pichia pastoris</i> with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases.</p><p>Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”).</p><p>Mn-lipoxygenase is an <i>R</i>-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other <i>R/S</i> lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols.</p><p>The genome of the rice blast fungus, <i>Magnaporthe grisea</i>, contains putative genes of lipoxygenases and LDS. Mycelia of <i>M. grisea</i> were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from <i>G.graminis</i>. </p><p>Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.</p>
216

Expression of Manganese Lipoxygenase and Site-Directed Mutagenesis of Catalytically Important Amino Acids : Studies on Fatty Acid Dioxygenases

Cristea, Mirela January 2006 (has links)
Polyunsaturated fatty acids can be bioactivated by two families of dioxygenases, which either contain non-heme iron (lipoxygenases) or heme (cyclooxygenases, linoleate diol synthases and α-dioxygenases). Lipoxygenases and their products play important roles in the pathophysiology of plants and fungi. The only known lipoxygenase with catalytic manganese (Mn-lipoxygenase) is secreted by a devastating root pathogen of wheat, the Take-all fungus Gaeumannomyces graminis. Its mycelia also contains linoleate diol synthase (LDS), which can oxidize linoleic acid to sporulation hormones. Mn-lipoxygenase belongs to the lipoxygenase gene family. Recombinant Mn-lipoxygenase was successfully expressed in the yeast Pichia pastoris with an expression level of 30 mg/L in fermentor culture. The tentative metal ligands of Mn-lipoxygenase were studied by site-directed mutagenesis. The results show that four residues His-274, His-278, His-462 and the C-terminal Val-602 likely coordinate manganese, as predicted by sequence alignments with Fe lipoxygenases. Mn-lipoxygenase (~100 kDa) contains an Asp-Pro peptide bond in the N-terminal region, which appears to hydrolyze during storage and in the acidic media during Pichia expression to an active enzyme of smaller size, mini-Mn-lipoxygenase (~70 kDa). The active form of Mn-lipoxygenase can oxygenate fatty acids of variable chain length, suggesting that the fatty acids enter the catalytic site with the ω-end (“tail first”). Mn-lipoxygenase is an R-lipoxygenase with a conserved Gly316 residue known as a determinant of stereospecificity in other R/S lipoxygenases. The Gly316Ala mutant showed an increased hydroperoxide isomerase activity and transformed 18:3n-3 and 17:3n-3 to epoxyalcohols. The genome of the rice blast fungus, Magnaporthe grisea, contains putative genes of lipoxygenases and LDS. Mycelia of M. grisea were found to express LDS activity. This enzyme was cloned and sequenced and showed 65% amino acid identity with LDS from G.graminis. Take-all and the rice blast fungi represent a constant threat to staple foods worldwide. Mn-lipoxygenase and LDS might provide new means to combat these pathogens.
217

Functional studies of a membrane-anchored cellulase from poplar

Jonsson Rudsander, Ulla January 2007 (has links)
Cellulose in particular and wood in general are valuable biomaterials for humanity, and cellulose is now also in the spotlight as a starting material for the production of biofuel. Understanding the processes of wood formation and cellulose biosynthesis could therefore be rewarding, and genomics and proteomics approaches have been initiated to learn more about wood biology. For example, the genome of the tree Populus trichocarpa has been completed during 2006. A single-gene approach then has to follow, to elucidate specific patterns and enzymatic details. This thesis depicts how a gene encoding a membrane-anchored cellulase was isolated from Populus tremula x tremuloides Mich, how the corresponding protein was expressed in heterologous hosts, purified and characterized by substrate analysis using different techniques. The in vivo function and modularity of the membrane-anchored cellulase was also addressed using overexpression and complementation analysis in Arabidopsis thaliana. Among 9 genes found in the Populus EST database, encoding enzymes from glycosyl hydrolase family 9, two were expressed in the cambial tissue, and the membrane-anchored cellulase, PttCel9A1, was the most abundant transcript. PttCel9A1 was expressed in Pichia pastoris, and purified by affinity chromatography and ion exchange chromatography. The low yield of recombinant protein from shake flask experiments was improved by scaling up in the fermentor. PttCel9A1 was however highly heterogenous, both mannosylated and phosphorylated, which made the protein unsuitable for crystallization experiments and 3D X-ray structure determination. Instead, a homology model using a well-characterized, homologous bacterial enzyme was built. From the homology model, interesting point mutations in the active site cleft that would highlight the functional differences of the two proteins could be identified. The real-time cleavage patterns of cello-oligosaccharides by mutant bacterial enzymes, the wildtype bacterial enzyme and PttCel9A1 were studied by 1H NMR spectroscopy, and compared with results from HPAEC-PAD analysis. The inverting stereochemistry for the hydrolysis reaction of the membrane-anchored poplar cellulase was also determined by 1H NMR spectroscopy, and it was concluded that transglycosylation in vivo is not a possible scenario. The preferred in vitro polymeric substrates for PttCel9A1 were shown to be long, low-substituted cellulose derivatives, and the endo-1,4--glucanase activity was not extended to branched or mixed linkage substrates to detectable levels. This result indicates an in vivo function in the hydrolysis of “amorphous” regions of cellulose, either during polymerization or crystallization of cellulose. In addition, overexpressing PttCel9A1 in A. thaliana, demonstrated a correlation with decreased crystallinity of cellulose. The significance of the different putative modules of PttCel9A1 was investigated by the construction of hybrid proteins, that were introduced into a knock-out mutant of A. thaliana, and the potential complementation of the phenotype was examined. A type B plant cellulase catalytic domain could not substitute for a type A plant cellulase catalytic domain, although localization and interaction motifs were added to the N- and C-terminus. / QC 20100802
218

Heterologous expression, characterization and applications of carbohydrate active enzymes and binding modules

Kallas, Åsa January 2006 (has links)
Wood and wood products are of great economical and environmental importance, both in Sweden and globally. Biotechnology can be used both for achieving raw material of improved quality and for industrial processes such as biobleaching. Despite the enormous amount of carbon that is fixed as wood, the knowledge about the enzymes involved in the biosynthesis, re-organization and degradation of plant cell walls is relatively limited. In order to exploit enzymes more efficiently or to develop new biotechnological processes, it is crucial to gain a better understanding of the function and mechanism of the enzymes. This work has aimed to increase the knowledge about some of the enzymes putatively involved in the wood forming processes in Populus. Xyloglucan endotransglycosylases and a putative xylanase represent transglycosylating and hydrolytic enzymes, respectively. Carbohydrate binding modules represent non-catalytic modules, which bind to the substrate. Among 24 genes encoding for putative xyloglucan endotransglycosylases or xyloglucan endohydrolases that were identified in the Populus EST database, two were chosen for further studies (PttXTH16-34 and PttXTH16-35). The corresponding proteins, PttXET16-34 and PttXET16-35, were expressed in P. pastoris, purified and biochemically characterized. The importance of the N-glycans was investigated by comparing the recombinant wild-type proteins with their deglycosylated counterparts. In order to obtain the large amounts of PttXET16-34 that were needed for crystallization and development of biotechnological applications, the conditions for the large-scale production of PttXET16-34 in a fermenter were optimized. In microorganisms, endo-(1,4)-β-xylanases are important members of the xylan degrading machinery. These enzymes are also present in plants where they might fulfill a similar, but probably more restrictive function. One putative endo-(1,4)-β-xylanase, denoted PttXYN10A, was identified in the hybrid aspen EST library. Sequence analysis shows that this protein contains three putative carbohydrate-binding modules (CBM) from family 22 in addition to the catalytic module from GH10. Heterologous expression and reverse genetics were applied in order to elucidate the function of the catalytic module as well as the binding modules of PttXYN10A. Just as in microorganisms, some of the carbohydrate active enzymes from plants have one or more CBM attached to the catalytic module. So far, a very limited number of plant CBMs has been biochemically characterized. A detailed bio-informatic analysis of the CBM family 43 revealed interesting modularity patterns. In addition, one CBM43 (CBM43PttGH17_84) from a putative Populus b-(1,3)-glucanase was expressed in E. coli and shown to bind to laminarin (β-(1,3)-glucan), mixed-linked β-(1,3)(1,4)-glucans and crystalline cellulose. Due to their high specificity for different carbohydrates, CBMs can be used as probes for the analysis of plant materials. Generally, they are more specific than both staining techniques and carbohydrate-binding antibodies. We have used cellulose- and mannan binding modules from microorganisms as tools for the analysis of intact fibers as well as processed pulps. / QC 20100903
219

Étude de la perméabilité intestinale des médicaments par la reconstitution du transporteur BCRP/ABCG2 dans des protéoliposomes

Akik, Wided 08 1900 (has links)
No description available.
220

Mise en place d’un nouveau test de perméabilité membranaire à l’aide de la glycoprotéine-P reconstituée dans des protéoliposomes

Flandrin, Aurore 08 1900 (has links)
Les membranes cellulaires jouent un rôle important dans l’absorption des médicaments et la distribution de ceux-ci dans le corps humain. Elles contiennent différents transporteurs membranaires qui sont responsables des profils pharmacocinétiques, d’innocuité et d’efficacité des xénobiotiques. Lors du développement d’un médicament, il s’avère donc indispensable, de prédire l’interaction des nouveaux composés avec les transporteurs présents dans l’organisme. Le but du projet de recherche est de créer un nouvel outil pour étudier le comportement de la glycoprotéine-P (P-gp), un transporteur membranaire responsable du rejet de nombreux composés, sur différents médicaments. Pour cela, un modèle non cellulaire est développé en utilisant des protéoliposomes : des liposomes dans lesquels des transporteurs sont incorporés. La méthodologie consiste tout d’abord à produire, extraire et purifier la protéine d’intérêt à partir de deux systèmes d’expression : MDCK-MDR1 (cellules de chien transfectées avec le gène humain MDR1) et Pichia pastoris (levures) fin de déterminer les avantages et les limites de ces deux types cellulaires. Différentes méthodes de reconstitution dans des protéoliposomes ont ensuite été testées avec la P-gp obtenue. Puis, l’activité ATPasique de la P-gp reconstituée a été évaluée en présence de différents substrats. Les protocoles de culture cellulaire, d’extraction et de purification des deux systèmes d’expression ont été implémentés avec succès au sein du laboratoire. Les résultats montrent que les rendements obtenus sont supérieurs avec les levures qu’avec les cellules de mammifère. En outre, Pichia pastoris offre les avantages d’être facile et rapide à cultiver et peu couteux. Les premiers résultats d’activité ATPasique obtenus avec la P-gp reconstituée en protéoliposomes étaient prometteurs mais n’ont pas été reproduits en raison de la dégradation de la protéine membranaire. Les prochaines études du projet porteront sur un autre transporteur membranaire de la famille ABC, BCRP, une protéine de plus petite taille qui devrait montrer une plus grande stabilité pour mener à bien les tests. / Cellular membranes play an important role in the absorption and distribution of drugs in the human body. They contain different membrane transporters, which are responsible for the pharmacokinetic properties of drugs, as well as the safety and efficiency of their diffusion. When developing a new drug, it is thus of utmost importance to study the way that it will interact with the transporters present within the body. The aim of this study was to evaluate a new tool for measuring permeability in order to understand the function and mecanisms of P-glycoprotein (P-gp). P-gp is a transporter that is responsible for the rejection of many different compounds found in various drugs. This study thus seeks to use proteoliposomes to develop non-cellular models of membrane permeability including efflux and uptake transporters. This novel model of permeability will be utilized to study the underlying mechanisms of membrane permeability to xenobiotics. The human P-gp was produced, extracted and purified using two different expression systems: MDCK-MDR1 cells (Madin-Darby canine kidney cells transfected with the human MDR1 gene) and Pichia pastoris. Both expression systems were studied in order to compare the strengths and weaknesses of each system. We then tested different methods of reconstituting the P-gp into protéoliposomes. Finally, we measured the level of ATPase activity using different substrates. The protocols of cell culture, extraction and purification of both expression systems were accomplished in a laboratory during this study. These results demonstrated that expressing P-gp using yeast was more effective than that of mammalian cells. Furthermore, working with Pichia pastoris offers multiple advantages: expressing P-gp was easier, faster and cheaper than working with mammalian cells. The first measurements of ATPase activity using reconstituted P-gp proteoliposomes were promising, however they proved difficult to reproduce due to the possible degradation of the membrane protein.Further studies in this project will look to evaluate another ABC membrane transporter, BCRP. This smaller protein should prove to be more stable than P-gp, facilitating experimentation.

Page generated in 0.0728 seconds