• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • Tagged with
  • 30
  • 30
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Photon Counting X-ray Detector Systems

Norlin, Börje January 2005 (has links)
<p>This licentiate thesis concerns the development and characterisation of X-ray imaging detector systems. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”.</p><p>With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the picture achieved. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the picture. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the picture.</p><p>The problem involving charge sharing which limits “colour” X-ray imaging is discussed in this thesis. Image quality, detector effectiveness and “colour correctness” are studied on pixellated detectors from the MEDIPIX collaboration. Characterisation measurements and simulations are compared to be able to understand the physical processes that take place in the detector. Simulations can show pointers for the future development of photon counting X-ray systems. Charge sharing can be suppressed by introducing 3D-detector structures or by developing readout systems which can correct the crosstalk between pixels.</p>
22

Development of the readout for the IBL Upgrade Project of the ATLAS Pixel Detector / Entwicklung einer Auslesekette für das IBL Upgrade Projekt des ATLAS Pixel Detektors

Krieger, Nina 28 September 2012 (has links)
No description available.
23

Search for the production of four top quarks in proton-proton collisions at $\sqrt{s}=13$ TeV in the single lepton and opposite-sign dilepton channels with the ATLAS detector at the Large Hadron Collider

Sabatini, Paolo 10 February 2020 (has links)
No description available.
24

Développement d'un imageur gamma hybride pour les applications de l'industrie nucléaire / Development of a hybrid gamma imager for nuclear industry applications

Amoyal, Guillaume 27 September 2019 (has links)
L'imagerie gamma est une technique qui permet la localisation spatiale de sources radioactives. Les différentes applications de cette technique couvrent les phases de démantèlement des installations nucléaires ou de gestion des déchets nucléaires, mais aussi la radioprotection ou la sécurité intérieure. L'utilisation de caméras gamma permet de réduire la dose reçue par les opérateurs, et, par conséquent, de respecter le principe ALARA. Il existe deux techniques d’imagerie permettant la localisation de radioéléments émetteurs gamma : l’imagerie à masque codé et l’imagerie Compton. L’imagerie à masque codé utilise la modulation spatiale du flux de photons gamma incidents par collimateur multi-trous placé entre la source et le détecteur. Elle présente l’avantage d’être extrêmement performante pour des émetteurs gamma « basses énergies », aussi bien en matière de sensibilité, qu’en matière de résolution angulaire. L'imagerie Compton, quant à elle, repose sur l’utilisation de la mécanique de diffusion Compton. L'énergie déposée pendant le processus de diffusion déterminera l'angle de diffusion, et les positions des interactions détermineront la direction des rayons gamma entrants. La position de la source radioactive peut ainsi être limitée à un cône. Si plusieurs cônes sont utilisés, alors la position où le plus grand nombre de cônes se chevauchent correspond à la position de la source radioactive. Une des limitations de cette technique concerne la localisation des émetteurs gamma « basses énergies », pour lesquels la résolution angulaire est fortement dégradée allant jusqu’à l’impossibilité complète de trouver la position. L’objectif de ces travaux est de développer un prototype d’imageur hybride associant les techniques d’imagerie à masque codé et d’imagerie Compton, afin de tirer profit des avantages de chacun des types d’imagerie. Les différents travaux menés, autour du détecteur pixellisé Timepix3, mais aussi en matière de développement d’algorithmes mathématiques, ont permis de proposer deux prototypes d’imageurs hybrides. Les résultats obtenus à l’issue de ces travaux de recherche ont permis de valider expérimentalement les performances d’un des prototypes d’imageurs et d’illustrer l’intérêt d’un système hybride. / Gamma imaging is a technique that allows the spatial localization of radioactive sources. The various applications of this technique cover decommissioning phases of nuclear facilities, nuclear waste management applications, but also radiation protection or Homeland Security. Using gamma camera reduces the dose received by operators and consequently contributes to the respect of the ALARA principle. There are two imaging techniques for the localization of gamma ray emitters: coded aperture imaging and Compton imaging. Coded aperture imaging relies on the spatial modulation of the incident gamma-ray flux by a multi-hole collimator placed between the detector and the radioactive source. It has the advantage of being extremely efficient for « low energy » gamma-ray emitters in terms of sensitivity and angular resolution. On the other hand, Compton imaging is based of the Compton scattering kinematic. The energy deposited during the scattering process will determine the scattering angle, and the positions of the interactions will determine the direction of the incoming gamma-ray. The position of the radioactive source can thus be limited to a cone. If several cones are used, then, the position where the greatest number of cones overlap corresponds to the position of the radioactive source. One limitations of this technique concerns the location of « low energy » gamma-ray emitters, for which the angular resolution is strongly degraded until it is completely not localizable. The objective of this work is to develop a prototype of hybrid imager that combines coded aperture and Compton imaging techniques in order to take advantage of each type of imaging. The different studies carried out, around the Timepix3 pixel detector, but also in the development of mathematical algorithms, have led to propose two prototypes of hybrid imager. The results obtained from this research work made it possible to validate experimentally the performance of one of the imager prototypes, and to illustrate the interest of a hybrid system.
25

Étude des collisions proton-proton dans l’expérience ATLAS avec les détecteurs ATLAS-MPX

Scallon, Olivia 05 1900 (has links)
Les seize détecteurs MPX constituant le réseau ATLAS-MPX ont été placés à différentes positions dans le détecteur ATLAS et sa averne au CERN dans le but de mesurer en emps réel les champs de radiation produits ar des particules primaires (protons des faisceaux) et des particules secondaires (kaons, pions, g, protons) issues des collisions proton-proton. Des films de polyéthylène (PE) et de fluorure de lithium (6LiF) recouvrent les détecteurs afin d’augmenter leur sensibilité aux neutrons produits par les particules primaires et secondaires interagissant avec les matériaux présents dans l’environnement d’ATLAS. La reconnaissance des traces laissées par les particules dans un détecteur ATLAS-MPX se fait à partir des algorithmes du logiciel MAFalda (“Medipix Analysis Framework”) basé sur les librairies et le logiciel d’analyse de données ROOT. Une étude sur le taux d’identifications erronées et le chevauchement d’amas a été faite en reconstruisant les activités des sources 106Ru et 137Cs. L’efficacité de détection des neutrons rapides a été mesurée à l’aide des sources 252Cf et 241AmBe (neutrons d’énergie moyenne de 2.13 et 4.08 MeV respectivement). La moyenne des efficacités de détection mesurées pour les neutrons produits par les sources 252C f et 241AmBe a été calculée pour les convertisseurs 6LiF et PE et donnent (0.8580 ± 0.1490)% et (0.0254 ± 0.0031)% pour LiF et (0.0510 ± 0.0061)% et (0.0591 ± 0.0063)% pour PE à bas et à haut seuil d’énergie respectivement. Une simulation du calcul de l’efficacité de détection des neutrons dans le détecteur MPX a été réalisée avec le logiciel GEANT4. Des données MPX correspondant aux collisions proton-proton à 2.4 TeV et à 7 TeV dans le centre de masse ont été analysées. Les flux détectés d’électrons et de photons sont particulièrement élevés dans les détecteurs MPX01 et MPX14 car ils sont plus près du point de collision. Des flux de neutrons ont été estimés en utilisant les efficacités de détection mesurées. Une corrélation avec la luminosité du LHC a été établie et on prédit que pour les collisions à 14 TeV dans le centre de masse et avec une luminosité de 10^34 cm-1*s-1 il y aura environ 5.1x10^8 ± 1.5x10^7 et 1.6x10^9 ± 6.3x10^7 particules détectées par les détecteurs MPX01 et MPX14 respectivement. / The sixteen detectors forming the ATLAS-MPX network have been placed in different positions inside the ATLAS detector and its cavern at CERN in order to measure, in real time, the radiation fields produced by primary particles (beam protons) and secondary particles (kaons, pions, photons, protons) resulting from the proton-proton collisions. Films of polyethylene (PE) and lithium fluoride (6LiF) cover the detectors so as to increase their sensitivity to neutrons produced by the primary and secondary particles interacting with the materials present in the ATLAS environment. The tracks identification in an ATLAS-MPX detector is obtained with the algorithms of the MAFalda software (Medipix Analysis Framework) based on the libraries and data-analysis software ROOT. A study on the mistag rate and blob overlap was made by reconstructing the activities of 106Ru and 137Cs sources. The fast neutron detection efficiency was measured with the help of 252C f and 241AmBe sources (neutrons with an average energy of 2.13 and 4.08 MeV, respectively). The detection efficiency measured for neutrons produced by 252Cf et 241AmBe sources was calculated for the 6LiF and PE converters. It averaged at low and high energy respectively (0.8580 ± 0.1490)% and (0.0254 ± 0.0031)% for LiF and (0.0510 ± 0.0061)% and (0.0591 ± 0.0063)% for PE. A simulation of the neutron detection efficiency calculation in the MPX detector was carried out with the GEANT4 software. MPX data corresponding to the proton-proton collisions at 2.4 TeV and 7 TeV at the center of mass were analyzed. The detected flux of electrons and photons are particularly high in the MPX01 and MPX14 detectors because they are closer to the point of collision. Fluxes of neutrons were estimated using the measured detection efficiencies. A correlation with the luminosity of the LHC was established. We predict that for 14 TeV collisions at the center of mass, with a luminosity of 1034 cm^2*s^1, the number of particle detected by MPX01 and MPX14 respectively will be about 5.1x10^8 ± 1.5x10^7 and 1.6x10^9 ± 6.3x10^7.
26

Characterisation and application of photon counting X-ray detector systems

Norlin, Börje January 2007 (has links)
This thesis concerns the development and characterisation of X-ray imaging systems based on single photon processing. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”. With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the image. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the image. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the image. This thesis presents characterisation and simulations to provide a detailed understanding of the physical processes concerning charge sharing in detectors from the MEDIPIX collaboration. Charge summing schemes utilising pixel to pixel communications are proposed. Charge sharing can also be suppressed by introducing 3D-detector structures. In the next generation of the MEDIPIX system, Medipix3, charge summing will be implemented. This system, equipped with a 3D-silicon detector, or a thin planar high-Z detector of good quality, has the potential to become a commercial product for medical imaging. This would be beneficial to the public health within the entire European Union. / Denna avhandling berör utveckling och karaktärisering av fotonräknande röntgensystem. ”Färgröntgen” öppnar nya perspektiv för medicinsk röntgendiagnostik och även för materialröntgen inom industrin. Skillnaden i absorption av olika ”färger” kan användas för att särskilja olika material i ett objekt. Färginformationen kan till exempel användas i sjukvården för att identifiera benskörhet. Färgen på röntgenfotonen kan identifieras om detektorsystemet kan detektera varje foton individuellt. Sådana detektorsystem kallas ”fotonräknande” system. Med modern teknik är det möjligt att konstruera fotonräknande detektorsystem som kan urskilja detaljer ner till en upplösning på circa 50 µm. Med så små pixlar kommer ett problem att uppstå. I en halvledardetektor ger varje absorberad foton upphov till ett laddningsmoln som bidrar till den erhållna bilden. För höga fotonenergier är storleken på laddningsmolnet jämförbar med 50 µm och molnet kan därför fördelas över flera pixlar i bilden. Laddningsdelning är ett centralt problem delvis på grund av att bildens upplösning försämras, men framför allt för att färginformationen i bilden förstörs. Denna avhandling presenterar karaktärisering och simulering för att ge en mer detaljerad förståelse för fysikaliska processer som bidrar till laddningsdelning i detektorer från MEDIPIX-projekter. Designstrategier för summering av laddning genom kommunikation från pixel till pixel föreslås. Laddningsdelning kan också begränsas genom att introducera detektorkonstruktioner i 3D-struktur. I nästa generation av MEDIPIX-systemet, Medipix3, kommer summering av laddning att vara implementerat. Detta system, utrustat med en 3D-detektor i kisel, eller en tunn plan detektor av högabsorberande material med god kvalitet, har potentialen att kunna kommersialiseras för medicinska röntgensystem. Detta skulle bidra till bättre folkhälsa inom hela Europeiska Unionen.
27

Étude des collisions proton-proton dans l’expérience ATLAS avec les détecteurs ATLAS-MPX

Scallon, Olivia 05 1900 (has links)
Les seize détecteurs MPX constituant le réseau ATLAS-MPX ont été placés à différentes positions dans le détecteur ATLAS et sa averne au CERN dans le but de mesurer en emps réel les champs de radiation produits ar des particules primaires (protons des faisceaux) et des particules secondaires (kaons, pions, g, protons) issues des collisions proton-proton. Des films de polyéthylène (PE) et de fluorure de lithium (6LiF) recouvrent les détecteurs afin d’augmenter leur sensibilité aux neutrons produits par les particules primaires et secondaires interagissant avec les matériaux présents dans l’environnement d’ATLAS. La reconnaissance des traces laissées par les particules dans un détecteur ATLAS-MPX se fait à partir des algorithmes du logiciel MAFalda (“Medipix Analysis Framework”) basé sur les librairies et le logiciel d’analyse de données ROOT. Une étude sur le taux d’identifications erronées et le chevauchement d’amas a été faite en reconstruisant les activités des sources 106Ru et 137Cs. L’efficacité de détection des neutrons rapides a été mesurée à l’aide des sources 252Cf et 241AmBe (neutrons d’énergie moyenne de 2.13 et 4.08 MeV respectivement). La moyenne des efficacités de détection mesurées pour les neutrons produits par les sources 252C f et 241AmBe a été calculée pour les convertisseurs 6LiF et PE et donnent (0.8580 ± 0.1490)% et (0.0254 ± 0.0031)% pour LiF et (0.0510 ± 0.0061)% et (0.0591 ± 0.0063)% pour PE à bas et à haut seuil d’énergie respectivement. Une simulation du calcul de l’efficacité de détection des neutrons dans le détecteur MPX a été réalisée avec le logiciel GEANT4. Des données MPX correspondant aux collisions proton-proton à 2.4 TeV et à 7 TeV dans le centre de masse ont été analysées. Les flux détectés d’électrons et de photons sont particulièrement élevés dans les détecteurs MPX01 et MPX14 car ils sont plus près du point de collision. Des flux de neutrons ont été estimés en utilisant les efficacités de détection mesurées. Une corrélation avec la luminosité du LHC a été établie et on prédit que pour les collisions à 14 TeV dans le centre de masse et avec une luminosité de 10^34 cm-1*s-1 il y aura environ 5.1x10^8 ± 1.5x10^7 et 1.6x10^9 ± 6.3x10^7 particules détectées par les détecteurs MPX01 et MPX14 respectivement. / The sixteen detectors forming the ATLAS-MPX network have been placed in different positions inside the ATLAS detector and its cavern at CERN in order to measure, in real time, the radiation fields produced by primary particles (beam protons) and secondary particles (kaons, pions, photons, protons) resulting from the proton-proton collisions. Films of polyethylene (PE) and lithium fluoride (6LiF) cover the detectors so as to increase their sensitivity to neutrons produced by the primary and secondary particles interacting with the materials present in the ATLAS environment. The tracks identification in an ATLAS-MPX detector is obtained with the algorithms of the MAFalda software (Medipix Analysis Framework) based on the libraries and data-analysis software ROOT. A study on the mistag rate and blob overlap was made by reconstructing the activities of 106Ru and 137Cs sources. The fast neutron detection efficiency was measured with the help of 252C f and 241AmBe sources (neutrons with an average energy of 2.13 and 4.08 MeV, respectively). The detection efficiency measured for neutrons produced by 252Cf et 241AmBe sources was calculated for the 6LiF and PE converters. It averaged at low and high energy respectively (0.8580 ± 0.1490)% and (0.0254 ± 0.0031)% for LiF and (0.0510 ± 0.0061)% and (0.0591 ± 0.0063)% for PE. A simulation of the neutron detection efficiency calculation in the MPX detector was carried out with the GEANT4 software. MPX data corresponding to the proton-proton collisions at 2.4 TeV and 7 TeV at the center of mass were analyzed. The detected flux of electrons and photons are particularly high in the MPX01 and MPX14 detectors because they are closer to the point of collision. Fluxes of neutrons were estimated using the measured detection efficiencies. A correlation with the luminosity of the LHC was established. We predict that for 14 TeV collisions at the center of mass, with a luminosity of 1034 cm^2*s^1, the number of particle detected by MPX01 and MPX14 respectively will be about 5.1x10^8 ± 1.5x10^7 and 1.6x10^9 ± 6.3x10^7.
28

Meření CP narušení na experimentu Belle v rozpadech B0 → ŋcK0S metodou tzv. časové analýzy, optimalizace vrcholového detektoru pro expriment Belle II. / Measurement of Time-Dependent CP Violation in B0 → ŋcK0S at Belle Experiment, Optimization Studies of the Belle II Vertex Detector

Drásal, Zbyněk January 2014 (has links)
Title: Measurement of Time-Dependent CP Violation in B0 → ηcK0 S at Belle Experi- ment, Optimization Studies of the Belle II Vertex Detector Author: Zbyněk Drásal Department: Institute of Particle and Nuclear Physics Supervisor: Dr. Zdeněk Doležal, IPNP Supervisor's e-mail address: Zdenek.Dolezal@mff.cuni.cz Abstract: This doctoral thesis deals with two independent topics. In the first part we present a measurement of branching ratio(s) and time-dependent CP violation parame- ters in B0 (B± ) → ηcK0 S(K± ), ηc → p¯p. The values of CP violation parameters have been found as follows: sin 2φ1, denoted as an SCP parameter, equals: SCP = 0.68+0.38 −0.46±0.13syst, the direct CP violation parameter, denoted as an ACP , is: ACP = 0.00+0.23 −0.31 ± 0.08syst. These results have been obtained with the final data sample of 772×106 B ¯B pairs collected at Υ(4S) resonance with a Belle detector at the KEKB e+ e− asymmetric collider machine in Japan. In the second part, we present our approach to the Monte Carlo (MC) simula- tion of Belle II vertex detector and its response to high energy particles. Belle II represents an upgrade of current Belle experiment and its designed vertex detector will consist of 2 layers of Depfet pixel detectors (PXD) and 4 layers of double-sided silicon micro-strip detectors (SVD). The MC...
29

Etude d'un détecteur pixel monolithique pour le trajectographe d'ATLAS auprès du LHC de haute luminosité / Study of a monolithic pixel detector for the ATLAS tracker at the High Luminosity LHC

Liu, Jian 27 May 2016 (has links)
Prévue pour 2024, une série d’améliorations doit être apportée au grand collisionneur d’hadrons du CERN (LHC) de manière à élargir son potentiel de découverte de nouvelle physique. Cette thèse se situe dans la perspective des études d’amélioration du détecteur ATLAS dans ce nouvel environnement, et concerne une nouvelle technologie monolithique HV/HR CMOS qui pourrait être utilisée pour les détecteurs de traces centraux pixélisés. Cette technologie a le potentiel de permettre la réduction de l’épaisseur des détecteurs, d'augmenter la granularité ainsi que de réduire les couts de production.Au sein de la collaboration HV/HR CMOS d’ATLAS, divers prototypes ont été développés en utilisant les technologies de différents partenaires industriels : GlobalFoundries (GF) BCDlite 130 nm et LFoundry (LF) 150 nm entre autres. Pour comprendre le comportement électrique et la capacité de détection de telles technologies, des simulations TCAD -Technology Computer Aided Design- en 2D et 3D ont été réalisées pour extraire le profil de la zone déplétée, la tension de claquage, la capacitance ainsi que la collection de charges ionisées des prototypes. Le développement de systèmes de test complexes et la caractérisation des prototypes HV/HR CMOS ont aussi été une partie du travail fourni pour cette thèse. Les programmes d’acquisition, en particulier pour ce qui concerne les tests sous protons ou auprès d’irradiateurs à rayons X, ainsi que les programmes de réglages de seuil ont été implémenté dans divers systèmes de test. Plusieurs versions des prototypes développés dans 3 technologies HV/HR CMOS différentes (AMS 0.18 μm HV, GF BCDlite 130nm et LF 150nm) ont été caractérisées. / A major upgrade to the Large Hadron Collider (LHC), scheduled for 2024 will be brought to the machine so as to extend its discovery potential. This PhD is part of the ATLAS program and aims at studying a new monolithic technology in the framework of the design of an upgraded ATLAS inner tracker. This new type of sensor is based on a HV/HR CMOS technology, which would potentially offer lower material budget, reduced pixel pitch and lower cost with respect to the traditional hybrid pixel detector concept.Various prototypes have been developed using different HV/HR CMOS technologies from several industrial partners, within the ATLAS HV/HR collaboration, for instance Global Foundry (GF) BCDlite 130 nm and LFoundry (LF) 150 nm. In order to understand the electric behavior and the detection capabilities of these technologies, 3D and 2D Technology Computer Aided Design (TCAD) simulations have been performed to extract the depletion zone profile, the breakdown voltage, the leakage current, the capacitance as well as the charge collection of the prototypes. Test setup developments and characterizations of the HV/HR CMOS prototypes were also part of this thesis. The data acquisition programs, in particular dedicated to the proton test beams, X-ray sources and threshold tuning, have been implemented into various test setups. Several HV/HR CMOS prototypes developed in three HV/HR technologies, AMS 0.18 µm HV, GF BCDlite 130 nm and LF 150 nm, have been characterized.
30

Photon Counting X-ray Detector Systems

Norlin, Börje January 2005 (has links)
This licentiate thesis concerns the development and characterisation of X-ray imaging detector systems. “Colour” X-ray imaging opens up new perspectives within the fields of medical X-ray diagnosis and also in industrial X-ray quality control. The difference in absorption for different “colours” can be used to discern materials in the object. For instance, this information might be used to identify diseases such as brittle-bone disease. The “colour” of the X-rays can be identified if the detector system can process each X-ray photon individually. Such a detector system is called a “single photon processing” system or, less precise, a “photon counting system”. With modern technology it is possible to construct photon counting detector systems that can resolve details to a level of approximately 50 µm. However with such small pixels a problem will occur. In a semiconductor detector each absorbed X-ray photon creates a cloud of charge which contributes to the picture achieved. For high photon energies the size of the charge cloud is comparable to 50 µm and might be distributed between several pixels in the picture. Charge sharing is a key problem since, not only is the resolution degenerated, but it also destroys the “colour” information in the picture. The problem involving charge sharing which limits “colour” X-ray imaging is discussed in this thesis. Image quality, detector effectiveness and “colour correctness” are studied on pixellated detectors from the MEDIPIX collaboration. Characterisation measurements and simulations are compared to be able to understand the physical processes that take place in the detector. Simulations can show pointers for the future development of photon counting X-ray systems. Charge sharing can be suppressed by introducing 3D-detector structures or by developing readout systems which can correct the crosstalk between pixels.

Page generated in 0.0565 seconds