• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 58
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Robust Numerical Electromagnetic Eigenfunction Expansion Algorithms

Sainath, Kamalesh K. January 2016 (has links)
No description available.
42

Ultrafast Echocardiography

Posada, Daniel 08 1900 (has links)
Grâce à son accessibilité, sa polyvalence et sa sécurité, l'échocardiographie est devenue la technique d'imagerie la plus utilisée pour évaluer la fonction cardiaque. Au vu du succès de l'échographie ultrarapide par ondes planes des techniques similaires pour augmenter la résolution temporelle en échocardiographie ont été mise en oeuvre. L’augmentation de la résolution temporelle de l’échographie cardiaque au-delà des valeurs actuellement atteignables (~ 60 à 80 images par secondes), pourrait être utilisé pour améliorer d’autres caractéristiques de l'échocardiographie, comme par exemple élargir la plage de vitesses détectables en imagerie Doppler couleur limitées par la valeur de Nyquist. Nous avons étudié l'échocardiographie ultrarapide en utilisant des fronts d’ondes ultrasonores divergentes. La résolution temporelle atteinte par la méthode d'ondes divergentes a permis d’améliorer les capacités des modes d’échocardiographie en mode B et en Doppler couleur. La résolution temporelle de la méthode mode B a été augmentée jusqu'à 633 images par secondes, tout en gardant une qualité d'image comparable à celle de la méthode d’échocardiographie conventionnelle. La vitesse de Nyquist de la méthode Doppler couleur a été multipliée jusqu'à 6 fois au delà de la limite conventionnelle en utilisant une technique inspirée de l’imagerie radar; l’implémentation de cette méthode n’aurait pas été possible sans l’utilisation de fronts d’ondes divergentes. Les performances avantageuses de la méthode d'échocardiographie ultrarapide sont supportées par plusieurs résultats in vitro et in vivo inclus dans ce manuscrit. / Because of its low cost, versatility and safety, echocardiography has become the most common imaging technique to assess the cardiac function. The recent success of ultrafast ultrasound plane wave imaging has prompted the implementation of similar approaches to enhance the echocardiography temporal resolution. The ability to enhance the echocardiography frame rate beyond conventional values (~60 to 80 fps) would positively impact other echocardiography features, e.g. broaden the color Doppler unambiguous velocity range. We investigated the ultrafast echocardiography imaging approach using ultrasound diverging waves. The high frame rate offered by the diverging wave method was used to enhance the capabilities of both B-mode and color Doppler echocardiography. The B-mode temporal resolution was increased to 633 fps whilst the image quality was kept almost unchanged with reference to the conventional echocardiography technique. The color Doppler Nyquist velocity range was extended to up to 6 times the conventional limit using a weather radar imaging approach; such an approach could not have been implemented without using the ultrafast diverging wave imaging technique. The advantageous performance of the ultrafast diverging wave echocardiography approach is supported by multiple in vitro and in vivo results included in this manuscript.
43

Dispersion Engineering : Negative Refraction and Designed Surface Plasmons in Periodic Structures

Ruan, Zhichao January 2007 (has links)
The dispersion property of periodic structures is a hot research topic in the last decade. By exploiting dispersion properties, one can manipulate the propagation of electromagnetic waves, and produce effects that do not exist in conventional materials. This thesis is devoted to two important dispersion effects: negative refraction and designed surface plasmons. First, we introduce negative refraction and designed surface plasmons, including a historical perspective, main areas for applications and current trends. Several numerical methods are implemented to analyze electromagnetic effects. We apply the layer-KKR method to calculate the electromagnetic wave through a slab of photonic crystals. By implementing the refraction matrix for semi-infinite photonic crystals, the layer-KKR method is modified to compute the coupling coefficient between plane waves and Bloch modes in photonic crystals. The plane wave method is applied to obtain the band structure and the equal-frequency contours in two-dimensional regular photonic crystals. The finite-difference time-domain method is widely used in our works, but we briefly discuss two calculation recipes in this thesis: how to deal with the surface termination of a perfect conductor and how to calculate the frequency response of high-Q cavities more efficiently using the Pad\`{e} approximation method. We discuss a photonic crystal that exhibits negative refraction characterized by an effective negative index, and systematically analyze the coupling coefficients between plane waves in air and Bloch waves in the photonic crystal. We find and explain that the coupling coefficients are strong-angularly dependent. We first propose an open-cavity structure formed by a negative-refraction photonic crystal. To illuminate the physical mechanism of the subwavelength imaging, we analyze both intensity and phase spectrum of the transmission through a slab of photonic crystals with all-angle negative refraction. It is shown that the focusing properties of the photonic crystal slab are mainly due to the negative refraction effect, rather than the self-collimation effect. As to designed surface plasmons, we design a structured perfectly conducting surface to achieve the negative refraction of surface waves. By the average field method, we obtain the effective permittivity and permeability of a perfectly conducting surface drilled with one-dimensional periodic rectangle holes, and propose this structure as a designed surface plasmon waveguide. By the analogy between designed surface plasmons and surface plasmon polaritons, we show that two different resonances contribute to the enhanced transmission through a metallic film with an array of subwavelength holes, and explain that the shape effect is attributed to localized waveguide resonances. / QC 20100817
44

Controlled Source Radiomagnetotelluric (CSRMT) Applications in Environmental and Resource Exploration

Ismail, Nazli January 2009 (has links)
An integrated use of radio magnetotelluric (RMT) and controlled source tensor magnetotelluric (CSTMT) measurements, the so-called CSRMT method, has been employed in environmental and resource exploration studies. A number of case histories, including a groundwater investigation in glacial deposits, a study of fracture zones for geotechnical purposes and a mining exploration study of a copper deposit, are presented in this thesis in order to illustrate the usefulness and capability of the CSRMT method. The resolutions of the estimated models using various types of data are studied. Magnetotelluric transfer functions are used to analyze the dimensionality, the near surface resistivity distortions and the near field effects in the case of CSTMT data analysis. The near field effects in CSTMT data have also been identified by performing 2½D forward modelling. Data analysis, dimensionality tests and forward modelling show that at the lowest frequencies used the CSTMT transfer functions are generally distorted by source effects, except when the source-receiver distances are sufficient large compared with the penetration depth. Regarding CSTMT transfer functions, apparent resistivities are generally less distorted than phases. TM mode transfer functions are more affected by the sources than TE mode, while tipper vectors generally contain source signatures at all frequencies. Based on the analysis of dimensionality and source effects 2D inverse modelling of CSTMT and RMT data, as well as their combination, have been performed under the plane wave assumption. The RMT method proved to be a powerful tool for imaging the upper 50 m near-surface, but their penetration depth reduces as a conductive layer structures cover the targets at depth. The penetration depth can be increased by including the CSTMT data in the modelling if the measurements are in the far field range. The resolution of the deeper parts of the models may be improved by performing a joint inversion of TE and TM modes, if the strike direction is well-defined. Alternatively, inversion of determinant data can be performed, since the determinant data are less affected by 3D structures and source effects. However the resolution of the determinant models is somewhat degraded compared to the models inverted from combined TE and TM modes.
45

Studies of sound generation and propagation in flow ducts

Ducret, Fabrice January 2006 (has links)
<p>This thesis contains three papers investigating problems of interest for noise control in ducts.</p><p>The first part of this thesis treats the sound propagation in rectangular ducts with flexible walls. Various experimental techniques are performed to measure the internal sound propagation and radiation to the surrounding. An analytical model is derived to calculate the coupled propagation wavenumber and radiated sound power. The two-port formalism is used.</p><p>The second part starts with the sound propagation in open ended circular straight pipe with airflow (a tailpipe). Various aspects such as: acoustic damping, reflection and transmission at the open termination are investigated. Sound absorption due to vorticity shed at the opening is also treated. The geometry of the opening is then modified (oblique cuts, diffusers) and comparisons with the reference straight pipe is made for the sound transmission and flow induced noise generation. The effect of an upstream bend close to the opening is also investigated.</p><p>In the third part the acoustic impedance of perforated plates are investigated. In particular the application to small perforation ratios ( ≈ 1% ) and holes or slits with apertures of sub-millimetre size, so called micro-perforated plates, are of interest. Linear and non-linear regimes are investigated. A model is derived to calculate the linear acoustic impedance of perforated elements.</p>
46

Θεωρητική μελέτη της ηλεκτρομαγνητικά επαγώμενης δύναμης σε σωματίδια μίκρο – και νανομετρικών διαστάσεων

Γαλιατσάτος, Παύλος 23 June 2008 (has links)
Όταν ηλεκρομαγνητική (ΗΜ) ακτινοβολία, προερχόμενη από κάποια πηγή, προσπίπτει σε σύνολο από σωμάτια τότε λαμβάνουν χώρα δύο φαινόμενα. Πρώτον, ασκούνται δυνάμεις στα σωμάτια οι οποίες οφείλονται αποκλειστικά στην σκέδαση της ΗΜ ακτινοβολίας της πηγής από αυτά. Οι δυνάμεις αυτές ονομάζονται Optical Trapping Forces. Δεύτερον, τα ίδια τα σωμάτια σκεδάζοντας την ΗΜ ακτινοβολία της πηγής, λειτουργούν και αυτά ως πηγές ακτινοβολίας. Έτσι ασκούν δυνάμεις το ένα στο άλλο. Οι δυνάμεις αυτές ονομάζονται Optical Binding Forces. H παράλληλη δράση των δύο αυτών ειδών δυνάμεων έχει ως αποτέλεσμα την δημιουργία ευσταθών δομών από τα σωμάτια. Προκειμένου την θεωρητική πρόβλεψη των δομών που αναπτύσσονται, χρειαζόμαστε έναν ταχύτατο αλγόριθμο υπολογισμού των δυνάμεων. Ο πιο ταχύς αλγόριθμος θα είναι το αποτέλεσμα της εύρεσης ενός αναλυτικού τύπου υπολογισμού των δυνάμεων. Η κατασκευή και η παρουσίαση του αναλυτικού τύπου αυτού είναι και το περιεχόμενο της εργασίας που ακολουθεί. / When the electromagnetic radiation, originating from a source, meets an ensemble of particles, there are two phenomena which take place. First, there are forces acting on these particles due exclusively to the scattering of the electromagnetic radiation from the particles. These are the so-called “Optical Trapping Forces”. Second, particles themselves act as sources of radiation since they scatter the radiation, and they exert forces one to another. These are the so-called “Optical Binding Forces”. The coexistence of these two different forces results in the creation of stable structures where the particles are self-organized. To achieve the theoretical prediction of these structures, we need a very efficient algorithm to calculate the forces. The fastest possible and thus more efficient algorithm originates from the analytical formula of the forces. The construction and the solution of the forces analytical formula is the content of this research work.
47

Geometric Integrators For Coupled Nonlinear Schrodinger Equation

Aydin, Ayhan 01 January 2005 (has links) (PDF)
Multisymplectic integrators like Preissman and six-point schemes and a semi-explicit symplectic method are applied to the coupled nonlinear Schr&ouml / dinger equations (CNLSE). Energy, momentum and additional conserved quantities are preserved by the multisymplectic integrators, which are shown using modified equations. The multisymplectic schemes are backward stable and non-dissipative. A semi-explicit method which is symplectic in the space variable and based on linear-nonlinear, even-odd splitting in time is derived. These methods are applied to the CNLSE with plane wave and soliton solutions for various combinations of the parameters of the equation. The numerical results confirm the excellent long time behavior of the conserved quantities and preservation of the shape of the soliton solutions in space and time.
48

Back-propagation beamformer design with transverse oscillations for motion estimation in echocardiography / Formation de voie par rétro-propagation pour l'estimation du mouvement en échocardiographie

Guo, Xinxin 12 September 2014 (has links)
L'échographie est aujourd'hui l'une des modalités les plus populaires de diagnostic médical. Il permet d'observer, en temps réel, le mouvement des organes qui facilite le diagnostic des pathologies pour des médecins. L'échocardiographie [1, 2], l'imagerie du flux sanguin [3, 4] et l’élastographie [5-7] sont les domaines préférés de l'estimation de mouvement en utilisant l'échographie (en raison de son haut frame-rate).En conséquence, les images avec meilleurs qualités sont nécessaires. . En imagerie cardiaque, le système classique d'imagerie est limité dans la direction transversale (la direction perpendiculaire à celle de propagation). Travaillant sur la formation des images, ce problème peut être résolu en modifiant la façon de formateur de voie afin d'introduire des oscillations transversales (OTs) dans la fonction d’étalement du point (PSF). La technique d’oscillation transversale a montré son potentiel d'améliorer la précision de l'estimation de mouvement local dans la direction transversale (la direction perpendiculaire à celle de propagation). La classique OT en géométrie linéaire, basée sur l'approximation de Fraunhofer, relie la PSF et la fonction de pondération par la transformée de Fourier. Motivé par l'adaptation des OTs en échocardiographie, nous proposons une technique spécifique basée sur la rétro-propagation afin de construire des OTs en géométrie sectorielle. La performance de la méthode de rétro-propagation proposée a été étudiée progressivement, comparée avec la méthode de la transformée de Fourier, par exemple, l'évaluation de la qualité de la PSF quantifié, dans l'estimation de mouvement cardiaque en simulation, et en étude la qualité des PSF visuellement expérimentale. Les résultats quantifiés montrent les OT-images sont mieux contrôlés par la méthode proposée que par le formateur de voie conventionnelle. Une autre méthode, basée sur la décomposition d'onde plane et un principe différent de rétro-propagation, a été présentée. Cette méthode mieux prend en compte la propriété 2D de PSF, en décomposant la PSF dans un ensemble d'ondes planes directionnelle, les rétro-propage à la sonde, en utilisant les résultats de superposition comme excitations, un PSF simulée et conforme fortement au PSF théorique est acquis. En adaptant cette méthode à la géométrie sectorielle, la qualité de la PSF obtenue en face et sur la côté de la sonde est meilleure en utilisant la décomposition en ondes planes à celle de la transformée de Fourier, le travail supplémentaire sera adressé à adapter la décomposition en ondes planes à imagerie sectorielle et l’estimation du mouvement. / Echography is nowadays one of the most popular medical diagnosis modalities. It enables real-time observation the motion of moving organs which facilitates the diagnosis of pathologies for physician. Echocardiography [1, 2], blood flow imaging [3, 4] and elastography [5-7] are the favorite domains of motion estimation in using of echography (e.g., due to its high frame-rate capacity). Thus the requirements for imaging with high quality are on the primary place. In cardiac imaging, the conventional imaging system is somehow limited in the transverse direction (the direction perpendicular to the beam axis). Working on the image formation, this problem can be addressed by modifying the beamforming scheme in order to introduce transverse oscillations (TOs) in the system point spread function (PSF). Transverse oscillation techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates PSF and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation in order to build TOs in sectorial geometry. The performance of the proposed back-propagation method has been studied gradually, in comparison with the Fourier transform, such as in evaluation of the quality of PSF, in estimation of simulated cardiac motion and in experiments study, etc. The quantified results demonstrate the proposed method leads to better controlled TOs images than the conventional beamforming. Another method based on plane wave decomposition and a different back-propagation principle has been presented. This method is better taking into account the 2D property of PSF, by decomposing the PSF into a set of plane waves directionally, back-propagating them to the probe, by using the superposition results as excitations, a simulated PSF with high accordance to the theoretical one is acquired. By adapting this method to sectorial geometry, the quality of PSF obtained in front of probe is better using the plane wave decomposition method than that of Fourier relation, but it is limited for the scanning on the side of probe, so the further work will be addressed to adapting the plane wave decomposition method to the complete sectorial imaging.
49

Development of the partition of unity finite element method for the numerical simulation of interior sound field / Développement de la partition de l'unité méthode des éléments finis pour la simulation numérique de champ sonore intérieur

Yang, Mingming 29 June 2016 (has links)
Dans ce travail, nous avons introduit le concept sous-jacent de PUFEM et la formulation de base lié à l'équation de Helmholtz dans un domaine borné. Le processus d'enrichissement de l'onde plane de variables PUFEM a été montré et expliqué en détail. L'idée principale est d'inclure une connaissance a priori sur le comportement local de la solution dans l'espace des éléments finis en utilisant un ensemble de fonctions d'onde qui sont des solutions aux équations aux dérivées partielles. Dans cette étude, l'utilisation des ondes planes se propageant dans différentes directions a été favorisée car elle conduit à des algorithmes de calcul efficaces. En outre, nous avons montré que le nombre de directions d'ondes planes dépend de la taille de l'élément PUFEM et la fréquence des ondes à la fois en 2D et 3D. Les approches de sélection de ces ondes planes sont également illustrés. Pour les problèmes 3D, nous avons étudié deux systèmes de distribution des directions d'ondes planes qui sont la méthode du cube discrétisé et la méthode de la force de Coulomb. Il a été montré que celle-ci permet d'obtenir des directions d'onde espacées de façon uniforme et permet d'obtenir un nombre arbitraire d'ondes planes attachées à chaque noeud de l'élément de PUFEM, ce qui rend le procédé plus souple.Dans le chapitre 3, nous avons étudié la simulation numérique des ondes se propageant dans deux dimensions en utilisant PUFEM. La principale priorité de ce chapitre est de venir avec un schéma d'intégration exacte (EIS), résultant en un algorithme d'intégration rapide pour le calcul de matrices de coefficients de système avec une grande précision. L'élément 2D PUFEM a ensuite été utilisé pour résoudre un problème de transmission acoustique impliquant des matériaux poreux. Les résultats ont été vérifiés et validés par la comparaison avec des solutions analytiques. Les comparaisons entre le régime exact d'intégration (EIS) et en quadrature de Gauss ont montré le gain substantiel offert par l'EIE en termes de temps CPU.Une 3D exacte Schéma d'intégration a été présenté dans le chapitre 4, afin d'accélérer et de calculer avec précision (jusqu'à la précision de la machine) des intégrales très oscillatoires découlant des coefficients de la matrice de PUFEM associés à l'équation 3D Helmholtz. Grâce à des tests de convergence, un critère de sélection du nombre d'ondes planes a été proposé. Il a été montré que ce nombre ne pousse que quadratiquement avec la fréquence qui donne lieu à une réduction drastique du nombre total de degrés de libertés par rapport au FEM classique. Le procédé a été vérifié pour deux exemples numériques. Dans les deux cas, le procédé est représenté à converger vers la solution exacte. Pour le problème de la cavité avec une source de monopôle située à l'intérieur, nous avons testé deux modèles numériques pour évaluer leur performance relative. Dans ce scénario, où la solution exacte est singulière, le nombre de directions d'onde doit être choisie suffisamment élevée pour faire en sorte que les résultats ont convergé.Dans le dernier chapitre, nous avons étudié les performances numériques du PUFEM pour résoudre des champs sonores intérieurs 3D et des problèmes de transmission d'ondes dans lequel des matériaux absorbants sont présents. Dans le cas particulier d'un matériau réagissant localement modélisé par une impédance de surface. Un des critères d'estimation d'erreur numérique est proposé en considérant simplement une impédance purement imaginaire qui est connu pour produire des solutions à valeur réelle. Sur la base de cette estimation d'erreur, il a été démontré que le PUFEM peut parvenir à des solutions précises tout en conservant un coût de calcul très faible, et seulement environ 2 degrés de liberté par longueur d'onde ont été jugées suffisantes. Nous avons également étendu la PUFEM pour résoudre les problèmes de transmission des ondes entre l'air et un matériau poreux modélisé comme un fluide homogène équivalent. / In this work, we have introduced the underlying concept of PUFEM and the basic formulation related to the Helmholtz equation in a bounded domain. The plane wave enrichment process of PUFEM variables was shown and explained in detail. The main idea is to include a priori knowledge about the local behavior of the solution into the finite element space by using a set of wave functions that are solutions to the partial differential equations. In this study, the use of plane waves propagating in various directions was favored as it leads to efficient computing algorithms. In addition, we showed that the number of plane wave directions depends on the size of the PUFEM element and the wave frequency both in 2D and 3D. The selection approaches for these plane waves were also illustrated. For 3D problems, we have investigated two distribution schemes of plane wave directions which are the discretized cube method and the Coulomb force method. It has been shown that the latter allows to get uniformly spaced wave directions and enables us to acquire an arbitrary number of plane waves attached to each node of the PUFEM element, making the method more flexible.In Chapter 3, we investigated the numerical simulation of propagating waves in two dimensions using PUFEM. The main priority of this chapter is to come up with an Exact Integration Scheme (EIS), resulting in a fast integration algorithm for computing system coefficient matrices with high accuracy. The 2D PUFEM element was then employed to solve an acoustic transmission problem involving porous materials. Results have been verified and validated through the comparison with analytical solutions. Comparisons between the Exact Integration Scheme (EIS) and Gaussian quadrature showed the substantial gain offered by the EIS in terms of CPU time.A 3D Exact Integration Scheme was presented in Chapter 4, in order to accelerate and compute accurately (up to machine precision) of highly oscillatory integrals arising from the PUFEM matrix coefficients associated with the 3D Helmholtz equation. Through convergence tests, a criteria for selecting the number of plane waves was proposed. It was shown that this number only grows quadratically with the frequency thus giving rise to a drastic reduction in the total number of degrees of freedoms in comparison to classical FEM. The method has been verified for two numerical examples. In both cases, the method is shown to converge to the exact solution. For the cavity problem with a monopole source located inside, we tested two numerical models to assess their relative performance. In this scenario where the exact solution is singular, the number of wave directions has to be chosen sufficiently high to ensure that results have converged. In the last Chapter, we have investigated the numerical performances of the PUFEM for solving 3D interior sound fields and wave transmission problems in which absorbing materials are present. For the specific case of a locally reacting material modeled by a surface impedance. A numerical error estimation criteria is proposed by simply considering a purely imaginary impedance which is known to produce real-valued solutions. Based on this error estimate, it has been shown that the PUFEM can achieve accurate solutions while maintaining a very low computational cost, and only around 2 degrees of freedom per wavelength were found to be sufficient. We also extended the PUFEM for solving wave transmission problems between the air and a porous material modeled as an equivalent homogeneous fluid. A simple 1D problem was tested (standing wave tube) and the PUFEM solutions were found to be around 1% error which is sufficient for engineering purposes.
50

Modelování elektromagnetického pole ve tkáni / Elektromagnetic field mapping in tissue

Port, Martin January 2013 (has links)
This thesis is an introduction to the modeling of electromagnetic fields in the tissue and is focused on the knowledge of electromagnetic field theory. Maxwell's equations and their solutions are described the spread of plane waves in the environment. It also discusses the exposure limit values of specific absorbed power and hygienic limits based on the standards in force in the Czech Republic on health protection against nonionizing radiation in accordance with Government Regulation No. 106/2010 Coll. It also deals with the software interface in COMSOL Multiphysics 4.2 for solving physical modeling and simulation. There is mention of the RF module, which is used for modeling. Work mentions in detail about the menu of the program and the most important part - the Model Builder.

Page generated in 0.0587 seconds