Spelling suggestions: "subject:"planetary geology"" "subject:"aplanetary geology""
21 |
IDENTIFICATION OF ANCIENT ENVIRONMENTS AND THEIR RELATED GEOLOGIC PROCESSES ON MARS USING REMOTE SENSING TECHNIQUESAmanda Rudolph (16636299) 02 August 2023 (has links)
<p>The present-day sedimentary rock record on Mars provides insights into the early surface and subsurface geologic processes. Understanding the sediment characteristics in different environments can help to constrain the climate regimes, potential for habitability, and provide a record of ancient surface processes. The research presented in this dissertation uses complementary remote sensing techniques and datasets from rovers at the surface, satellites in orbit, and at terrestrial analogs that are relevant to current Mars exploration to better characterize alteration through water-rock alteration at multiple scales.</p><p>The martian field site for this work is Mt. Sharp, a 5-kilometer-high mountain in Gale crater that is predominantly composed of fluviolacustrine strata overlain by aeolian strata. At the rover-scale, the effects of large clay-mineral rich deposits were characterized using landscape- and hand lens-scale visible images from the Mastcam and MAHLI instruments, and multispectral visible/near-infrared images from Mastcam (445-1013 nm). Detailed analysis of the observed textures and spectral properties showed that the clay-rich deposits preserve the early surface environment, based on their lack of diagenetic features. While the regions immediately surrounding the clay-rich deposit experienced prolonged exposure to water, leading to enhanced alteration zones, and destroying characteristics from the early environment but providing insight into later water-rock processes.</p><p>At the orbital-scale, three visually distinct, dark-toned, and erosion-resistant layers were mapped and characterized using visible to short wave infrared hyperspectral (700-2650 nm) and image data. Two of these units have been identified as either aeolian or lacustrine through in situ rover investigations and the third unit will not be explored in situ so its origin can only be constrained through orbital analyses. We conducted a comparison of the morphological and spectral properties of the two known units to constrain whether their respective environments can be differentiated from orbit and apply this knowledge to the unknown third unit. The composition of all three units is similar, dominated by mafic minerals, suggesting a similar sediment source. The morphology is distinct between the lacustrine and aeolian units, with the unknown unit having similar morphology as the lacustrine unit, suggesting similar environments. We propose that the lacustrine unit in this study likely represent short-timescale transitions between wet and dry environments, where mafic sands are exposed to water prior to burial and lithification. While in the aeolian unit, most water-rock interactions occur upon lithification and later diagenesis. This has climatic implications in terms of the presence of surface water as these units were deposited as part of the original Mt. Sharp strata (i.e., the lacustrine unit) while some mantling existing topography (i.e., the aeolian and unknown units), representing similar processes but at a much later time.</p><p>The terrestrial analog field site for this dissertation was conducted in Iceland which represents a cold and wet/icy climate. We characterized sediments produced through glaciovolcanism and how they are sorted and altered through transport from source to sink along to characterize unique identifiers of glaciovolcanism that can be determined with Mars-relevant techniques. Decorrelation stretched visible images and lab visible/near-infrared reflectance and thermal-infrared emission data sets (400-2500 nm and 1200-400 cm-1, respectively) show that it is possible to differentiate sediments from glaciovolcanic and subaerial volcanic systems. In some glaciovolcanic systems, a high glass abundance (50-90 %) is observed in sediment grains due to the erosion of hyaloclastite and hyalotuff, deposits that form in water- and ice-magma interactions. These glass grains did not readily breakdown physically or chemically during transport, suggesting that they could still be observed on the martian surface today and be used to identify possible glaciovolcanic deposits.</p><p>The research described in this thesis improves the understanding of different geologic environments using remote sensing techniques and their climatic implications. This will help to better constrain early environments on Mars and identify areas where water may have been present through the rock record, as observed from the surface and from orbit.</p>
|
22 |
Limits of tectonic reactivation on Mars using Earth analogue analysis and numerical modelingRich, Jonathan 12 May 2023 (has links) (PDF)
Recent geodynamic modeling studies suggest that the geometry of structural landforms in the Ouachita Mountains (OM) has been influenced by the reactivation of a weak scar in the mantle-lithosphere during intracontinental orogenesis. As deformation on one-plate planets such as Mars can be considered intracontinental, and impact cratering deeply scarred the Martian lithosphere, we hypothesize that structural geometries on Mars may also reflect heterogenous networks of lithospheric scarring. To investigate this hypothesis, we model the pre-erosional fold structure of the Maumelle Chaotic Zone in the OM to compare fault and fold geometries with that of the seismically-imaged mantle-lithosphere scar. We then numerically model deformation within the Martian crust and mantle-lithosphere in the presence of scarring to understand tectonic reactivation on one-plate planets. We find that structural geometries in the OM are consistent with a subsurface scar, and tectonic landforms on the surface of Mars may indeed reflect deformation generated by a network of lithospheric heterogeneity.
|
23 |
Detailed Mapping of Lava Flows in Syrtis Major Planum, MarsDemchuk, Robert W. 26 May 2021 (has links)
No description available.
|
24 |
Investigating the effects of space weathering on carbon-rich asteroidal regoliths through analysis of experimental analogsDara Laczniak (16655169) 01 August 2023 (has links)
<p>Space weathering refers to the gradual spectral, microstructural, and chemical alteration of airless planetary regoliths due to their exposure to the harsh environment of outer space. Solar wind irradiation and micrometeoroid impacts are the primary space weathering processes at work in our solar system. Although the microstructural and compositional effects of space weathering are small, occurring at the sub-micron scale in individual regolith grains, their collective impact on the spectral signature of planetary surfaces is critical. Space weathering is known to change the slope, albedo, and strength of absorption band features of reflectance spectra acquired by ground- and spacecraft-based instrumentation. In this way, space weathering impedes our ability to determine planetary surface compositions from remote sensing data and pair meteorites with their parent bodies. Thanks to decades of research since the Apollo sample return missions, the planetary science community has developed a comprehensive understanding of how space weathering alters the Moon and silicate-rich asteroids. However, the effects of space weathering on primitive, carbon-rich asteroids—which dominate the outer main belt—are more poorly constrained and very complex. This dissertation aims to improve our understanding of how solar wind irradiation and micrometeoroid bombardment modifies the spectral, microstructural, and chemical properties of carbonaceous asteroidal regoliths. To accomplish this goal, this research experimentally simulates constituent space weathering processes in the laboratory on carbon-rich analog materials. A multi-faceted analytical approach including a variety of electron microscopy and spectroscopic techniques is used to probe the spectral, microstructural, and chemical changes induced by experimental space weathering.</p><p>Chapter 1 of this dissertation provides an introduction to space weathering, including a description of the current state of knowledge in the field as well as the motivation for this research. Similarly, chapter 2 provides an overview of the various experimental simulations and coordinated analytical techniques employed in this work. Chapter 3 initiates the discussion of research accomplished during this doctoral program, presenting a detailed characterization of the spectral, microstructural, and chemical effects derived from simulated solar wind irradiation of a carbonaceous asteroid analog material. More specifically, in chapter 1, I perform high flux (~1013 ions/cm2/s), high fluence (1018 ions/cm2) 1 keV H+ and 4 keV He+ irradiation experiments on the Murchison meteorite. Chapter 2 investigates the role of incident ion flux in solar wind space weathering of carbonaceous asteroidal regolith by performing a set of low flux (~1011 ions/cm2/s) and high flux (~1013 ions/cm2/s) H+ and He+ irradiation experiments on Murchison samples. These experiments are the lowest flux solar wind simulations carried out, to date. Finally, chapter 5 presents results from the first <i>combined</i> ion irradiation and heating experiments performed on a carbon-rich analog using in situ transmission electron microscopy (TEM). In situ TEM is a relatively novel technique in the planetary and geological sciences which allows users to observe the physiochemical changes caused by an external stimuli in <i>real time</i>. The experimental approach used in chapter 5 simulates both solar wind irradiation and micrometeoroid impacts, and, thus, probes the cumulative microstructural and compositional modifications induced by these concurrent space weathering processes. In chapters 3 through 5, I compare my results to previous space weathering simulations and observations of lunar and asteroidal returned samples. Findings from this dissertation advance the existing model of space weathering on carbon-rich asteroids, help inform remote sensing observations from the Hayabusa2 and OSIRIS-REx missions which have rendezvoused with C-complex asteroids Bennu and Ryugu, respectively, and provide experimental ground-truth for analyzing returned samples from these missions.</p>
|
25 |
The effects of magmatic evolution, crystallinity, and microtexture on the visible/near-infrared and thermal-infrared spectra of volcanic rocksNoel A Scudder (16649295) 01 August 2023 (has links)
<p>The natural chemical and physical variations that occur within volcanic rocks (petrology) provide critical insights into mantle and crust conditions on terrestrial bodies. Visible/near-infrared (VNIR; 0.3-2.5 µm) and thermal infrared (TIR; 5-50 µm) spectroscopy are the main tools available to remotely characterize these materials from satellites in orbit. However, the accuracy of petrologic information that can be gained from spectra when rocks exhibit complex variations in mineralogy, crystallinity, microtexture, and oxidation state occurring together in natural settings is not well constrained. Here, we compare the spectra of a suite of volcanic planetary analog rocks from the Three Sisters, OR to their mineralogy, chemistry, and microtexture from X-ray diffraction, X-ray fluorescence, and electron microprobe analysis. Our results indicate that TIR spectroscopy is an effective petrologic tool in such rocks for modeling bulk mineralogy, crystallinity, and mineral chemistry. Given a library with appropriate glass endmembers, TIR modeling can derive glass abundance with similar accuracy as other major mineral groups and provide first-order estimates of glass wt.% SiO2 in glass-rich samples, but cannot effectively detect variations in microtexture and minor oxide minerals. In contrast, VNIR spectra often yield non-unique mineralogic interpretations due to overlapping absorption bands from olivine, glass, and Fe-bearing plagioclase. In addition, we find that sub-micron oxides hosted in transparent matrix material that are common in fine-grained extrusive rocks can lower albedo and partially to fully suppress mafic absorption bands, leading to very different VNIR spectra in rocks with the same mineralogy and chemistry. Mineralogical interpretations from VNIR spectra should not be treated as rigorous petrologic indicators, but can supplement TIR-based petrology by providing unique constraints on oxide minerals, microtexture, and alteration processes.</p>
|
Page generated in 0.0653 seconds