• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 47
  • 42
  • 39
  • 34
  • 27
  • 25
  • 20
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Exoplanets in Open Clusters and Binaries: New Constraints on Planetary Migration

Quinn, Samuel N 12 August 2016 (has links)
In this dissertation, we present three complementary studies of the processes that drive planetary migration. The first is a radial-velocity survey in search of giant planets in adolescent (<1 >Gyr) open clusters. While several different mechanisms may act to drive giant planets inward, only some mechanisms will excite high eccentricities while doing so. Measuring the eccentricities of young hot Jupiters in these clusters (at a time before the orbits have had a chance to circularize due to tidal friction with their host stars) will allow us to identify which mechanisms are most important. Through this survey, we detect the first 3 hot Jupiters in open clusters (and at least 4 long-period planets), and we measure the occurrence rate of hot Jupiters in clusters to be similar to that of the field (~1%). We determine via analyses of hot Jupiter eccentricities and outer companions in these systems that high eccentricity migration mechanisms (those requiring the presence of a third body) are important for migration. The second project, an adaptive optics imaging survey for stellar companions to known hot Jupiter hosts, aims to determine the role that stellar companions in particular play in giant planet migration. Through a preliminary analysis, we derive a lower limit on the binary frequency of 45% (greater than that of the typical field star), and we find that the presence of a companion is correlated with misalignment of the spin-orbit angle of the planetary system, as would be expected for stellar Kozai-Lidov migration: at least 74% of misaligned systems reside in binaries. We thus conclude that among high eccentricity migration mechanisms, those requiring a stellar companion play a significant role. Finally, we describe simulations of measurements of the planet population expected to be discovered by TESS, and use these to demonstrate that a strong constraint on the obliquity distribution of small planets can be derived using only TESS photometry, Gaia astrometry, and vsin(i) measurements of the host stars. This obliquity distribution will be a key piece of evidence to help detemine the likely formation and migration histories of small planets, and can contribute to the assessment of the potential for Earth-like planets to harbor life.
22

Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b

Chadney, J. M., Koskinen, T. T., Galand, M., Unruh, Y. C., Sanz-Forcada, J. 08 December 2017 (has links)
Stellar flares are a frequent occurrence on young low-mass stars around which many detected exoplanets orbit. Flares are energetic, impulsive events, and their impact on exoplanetary atmospheres needs to be taken into account when interpreting transit observations. We have developed a model to describe the upper atmosphere of extrasolar giant planets (EGPs) orbiting flaring stars. The model simulates thermal escape from the upper atmospheres of close-in EGPs. Ionisation by solar radiation and electron impact is included and photo-chemical and diffusive transport processes are simulated. This model is used to study the effect of stellar flares from the solar-like G star HD 209458 and the young K star HD 189733 on their respective planets, HD 209458b and HD 189733b. The Sun is used as a proxy for HD 209458, and is an element of Eridani, as a proxy for HD 189733. A hypothetical HD 209458b-like planet orbiting the very active M star AU Microscopii is also simulated. We find that the neutral upper atmosphere of EGPs is not significantly affected by typical flares on HD 209458 and HD 189733. Therefore, stellar flares alone would not cause large enough changes in planetary mass loss to explain the variations in HD 189733b transit depth seen in previous studies, although we show that it may be possible that an extreme stellar proton event could result in the required mass loss. Our simulations do however reveal an enhancement in electron number density in the ionosphere of these planets, the peak of which is located in the layer where stellar X-rays are absorbed. Electron densities are found to reach 2.2 to 3.5 times pre-flare levels and enhanced electron densities last from about 3 to 10 h after the onset of the flare, depending on the composition of the ionospheric layer. The strength of the flare and the width of its spectral energy distribution affect the range of altitudes in the ionosphere that see enhancements in ionisation. A large broadband continuum component in the XUV portion of the flaring spectrum in very young flare stars, such as AU Mic, results in a broad range of altitudes a ff ected in planets orbiting this star. Indeed, as well as the X-ray absorption layer, the layer in which EUV photons are absorbed is also strongly enhanced.
23

Characterizing 51 Eri b from 1 to 5 mu m: A Partly Cloudy Exoplanet

Rajan, Abhijith, Rameau, Julien, Rosa, Robert J. De, Marley, Mark S., Graham, James R., Macintosh, Bruce, Marois, Christian, Morley, Caroline, Patience, Jennifer, Pueyo, Laurent, Saumon, Didier, Ward-Duong, Kimberly, Ammons, S. Mark, Arriaga, Pauline, Bailey, Vanessa P., Barman, Travis, Bulger, Joanna, Burrows, Adam S., Chilcote, Jeffrey, Cotten, Tara, Czekala, Ian, Doyon, Rene, Duchêne, Gaspard, Esposito, Thomas M., Fitzgerald, Michael P., Follette, Katherine B., Fortney, Jonathan J., Goodsell, Stephen J., Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Johnson-Groh, Mara, Kalas, Paul, Konopacky, Quinn, Lafrenière, David, Larkin, James E., Maire, Jérôme, Marchis, Franck, Metchev, Stanimir, Millar-Blanchaer, Maxwell A., Morzinski, Katie M., Nielsen, Eric L., Oppenheimer, Rebecca, Palmer, David, Patel, Rahul I., Perrin, Marshall, Poyneer, Lisa, Rantakyrö, Fredrik T., Ruffio, Jean-Baptiste, Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Song, Inseok, Soummer, Rémi, Thomas, Sandrine, Vasisht, Gautam, Wallace, J. Kent, Wang, Jason J., Wiktorowicz, Sloane, Wolff, Schuyler 16 June 2017 (has links)
We present spectrophotometry spanning 1-5 mu m of 51 Eridani b, a 2-10 M-Jup planet discovered by the Gemini Planet Imager Exoplanet Survey. In this study, we present new K1 (1.90-2.19 mu m) and K2 (2.10-2.40 mu m) spectra taken with the Gemini Planet Imager as well as an updated L-P (3.76 mu m) and new M-S (4.67 mu m) photometry from the NIRC2 Narrow camera. The new data were combined with J (1.13-1.35 mu m) and H (1.50-1.80 mu m) spectra from the discovery epoch with the goal of better characterizing the planet properties. The 51 Eri b photometry is redder than field brown dwarfs as well as known young T-dwarfs with similar spectral type (between T4 and T8), and we propose that 51 Eri b might be in the process of undergoing the transition from L-type to T-type. We used two complementary atmosphere model grids including either deep iron/silicate clouds or sulfide/salt clouds in the photosphere, spanning a range of cloud properties, including fully cloudy, cloud-free, and patchy/intermediate-opacity clouds. The model fits suggest that 51 Eri. b has an effective temperature ranging between 605 and 737 K, a solar metallicity, and a surface gravity of log(g) = 3.5-4.0 dex, and the atmosphere requires a patchy cloud atmosphere to model the spectral energy distribution (SED). From the model atmospheres, we infer a luminosity for the planet of -5.83 to -5.93 (logL/L circle dot),leaving 51 Eri b in the unique position of being one of the only directly imaged planets consistent with having formed via a cold-start scenario. Comparisons of the planet SED against warm-start models indicate that the planet luminosity is best reproduced by a planet formed via core accretion with a core mass between 15 and 127 M-circle plus.
24

A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS

Mulders, Gijs D., Pascucci, Ilaria, Apai, Dániel, Frasca, Antonio, Molenda-Żakowicz, Joanna 23 November 2016 (has links)
Host star metallicity provides a measure of the conditions in protoplanetary disks at the time of planet formation. Using a sample of over 20,000 Kepler stars with spectroscopic metallicities from the LAMOST survey, we explore how the exoplanet population depends on host star metallicity as a function of orbital period and planet size. We find that exoplanets with orbital periods less than 10 days are preferentially found around metal-rich stars ([Fe/H] similar or equal to 0.15 +/- 0.05 dex). The occurrence rates of these hot exoplanets increases to similar to 30% for super-solar metallicity stars from similar to 10% for stars with a sub-solar metallicity. Cooler exoplanets, which reside at longer orbital periods and constitute the bulk of the exoplanet population with an occurrence rate of greater than or similar to 90%, have host star metallicities consistent with solar. At short orbital periods, P < 10 days, the difference in host star metallicity is largest for hot rocky planets (< 1.7 R-circle plus), where the metallicity difference is [Fe/H] similar or equal to 0.25 +/- 0.07 dex. The excess of hot rocky planets around metal-rich stars implies they either share a formation mechanism with hot Jupiters, or trace a planet trap at the protoplanetary disk inner edge, which is metallicity dependent. We do not find statistically significant evidence for a previously identified trend that small planets toward the habitable zone are preferentially found around low-metallicity stars. Refuting or confirming this trend requires a larger sample of spectroscopic metallicities.
25

DYNAMICAL MASS MEASUREMENT OF THE YOUNG SPECTROSCOPIC BINARY V343 NORMAE AaAb RESOLVED WITH THE GEMINI PLANET IMAGER

Nielsen, Eric L., Rosa, Robert J. De, Wang, Jason, Rameau, Julien, Song, Inseok, Graham, James R., Macintosh, Bruce, Ammons, Mark, Bailey, Vanessa P., Barman, Travis S., Bulger, Joanna, Chilcote, Jeffrey K., Cotten, Tara, Doyon, Rene, Duchêne, Gaspard, Fitzgerald, Michael P., Follette, Katherine B., Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Kalas, Paul, Konopacky, Quinn M., Larkin, James E., Maire, Jérôme, Marchis, Franck, Marley, Mark S., Marois, Christian, Metchev, Stanimir, Millar-Blanchaer, Maxwell A., Oppenheimer, Rebecca, Palmer, David W., Patience, Jenny, Perrin, Marshall D., Poyneer, Lisa A., Pueyo, Laurent, Rajan, Abhijith, Rantakyrö, Fredrik T., Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Soummer, Remi, Thomas, Sandrine, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane J., Wolff, Schuyler G. 22 November 2016 (has links)
We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris (beta Pic) moving group. V343 Normae comprises a K0 and mid-M star in a similar to 4.5 year orbit (AaAb) and a wide 10 '' M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M-Aa = 1.10 +/- 0.10M(circle dot) and M-Ab= 0.290 +/- 0.018 M-circle dot. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ. 3305, which is another group member with resolved binary components and dynamical masses.
26

THE MASS AND SIZE DISTRIBUTION OF PLANETESIMALS FORMED BY THE STREAMING INSTABILITY. I. THE ROLE OF SELF-GRAVITY

Simon, Jacob B., Armitage, Philip J., Li, Rixin, Youdin, Andrew N. 05 May 2016 (has links)
We study the formation of planetesimals in protoplanetary disks from the gravitational collapse of solid over-densities generated via the streaming instability. To carry out these studies, we implement and test a particle-mesh self-gravity module for the ATHENA code that enables the simulation of aerodynamically coupled systems of gas and collisionless self-gravitating solid particles. Upon employment of our algorithm to planetesimal formation simulations, we find that (when a direct comparison is possible) the ATHENA simulations yield predicted planetesimal properties that agree well with those found in prior work using different numerical techniques. In particular, the gravitational collapse of streaming-initiated clumps leads to an initial planetesimal mass function that is well-represented by a power law, dN / dM(p) proportional to M-p(-p), with p similar or equal to 1.6 +/- 0.1, which equates to a differential size distribution of dN / dR(p) proportional to R-p(-q), with q similar or equal to 2.8 +/- 0.1. We find no significant trends with resolution from a convergence study of up to 512(3) grid zones and N-par approximate to 1.5 x 10(8) particles. Likewise, the power-law slope appears indifferent to changes in the relative strength of self-gravity and tidal shear, and to the time when (for reasons of numerical economy) self-gravity is turned on, though the strength of these claims is limited by small number statistics. For a typically assumed radial distribution of minimum mass solar nebula solids (assumed here to have dimensionless stopping time tau = 0.3), our results support the hypothesis that bodies on the scale of large asteroids or Kuiper Belt Objects could have formed as the high-mass tail of a primordial planetesimal population.
27

Analytic Scattering and Refraction Models for Exoplanet Transit Spectra

Robinson, Tyler D., Fortney, Jonathan J., Hubbard, William B. 27 November 2017 (has links)
Observations of exoplanet transit spectra are essential to understanding the physics and chemistry of distant worlds. The effects of opacity sources and many physical processes combine to set the shape of a transit spectrum. Two such key processes-refraction and cloud and/or haze forward-scattering-have seen substantial recent study. However, models of these processes are typically complex, which prevents their incorporation into observational analyses and standard transit spectrum tools. In this work, we develop analytic expressions that allow for the efficient parameterization of forward-scattering and refraction effects in transit spectra. We derive an effective slant optical depth that includes a correction for forward-scattered light, and present an analytic form of this correction. We validate our correction against a full-physics transit spectrum model that includes scattering, and we explore the extent to which the omission of forward-scattering effects may bias models. Also, we verify a common analytic expression for the location of a refractive boundary, which we express in terms of the maximum pressure probed in a transit spectrum. This expression is designed to be easily incorporated into existing tools, and we discuss how the detection of a refractive boundary could help indicate the background atmospheric composition by constraining the bulk refractivity of the atmosphere. Finally, we show that opacity from Rayleigh scattering and collision-induced absorption will outweigh the effects of refraction for Jupiter-like atmospheres whose equilibrium temperatures are above 400-500 K.
28

Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

Lavvas, P., Koskinen, T. 20 September 2017 (has links)
We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (similar to nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b's atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.
29

Elemental Abundances of Kepler Objects of Interest in APOGEE. I. Two Distinct Orbital Period Regimes Inferred from Host Star Iron Abundances

Wilson, Robert F., Teske, Johanna, Majewski, Steven R., Cunha, Katia, Smith, Verne, Souto, Diogo, Bender, Chad, Mahadevan, Suvrath, Troup, Nicholas, Prieto, Carlos Allende, Stassun, Keivan G., Skrutskie, Michael F., Almeida, Andrés, García-Hernández, D. A., Zamora, Olga, Brinkmann, Jonathan 17 January 2018 (has links)
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has observed similar to 600 transiting exoplanets and exoplanet candidates from Kepler (Kepler Objects of Interest, KOIs), most with >= 18 epochs. The combined multi-epoch spectra are of high signal-to-noise ratio (typically >= 100) and yield precise stellar parameters and chemical abundances. We first confirm the ability of the APOGEE abundance pipeline, ASPCAP, to derive reliable [Fe/H] and effective temperatures for FGK dwarf stars-the primary Kepler host stellar type-by comparing the ASPCAP-derived stellar parameters with those from independent high-resolution spectroscopic characterizations for 221 dwarf stars in the literature. With a sample of 282 close-in (P < 100 days) KOIs observed in the APOGEE KOI goal program, we find a correlation between orbital period and host star [Fe/H] characterized by a critical period, P-crit = 8.3(-4.1)(+0.1) days, below which small exoplanets orbit statistically more metal-enriched host stars. This effect may trace a metallicity dependence of the protoplanetary disk inner radius at the time of planet formation or may be a result of rocky planet ingestion driven by inward planetary migration. We also consider that this may trace a metallicity dependence of the dust sublimation radius, but we find no statistically significant correlation with host T-eff and orbital period to support such a claim.
30

Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks

Pinilla, P., Pohl, A., Stammler, S. M., Birnstiel, T. 11 August 2017 (has links)
Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 mu m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H2O, CO2, and NH3. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H2O and CO2 (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.

Page generated in 0.1014 seconds