• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 47
  • 42
  • 39
  • 34
  • 27
  • 25
  • 20
  • 18
  • 18
  • 17
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Exploring the Extremes of Exoplanet Detection and Characterization in High-Magnification Microlensing Events

Yee, Jennifer Chun Ming 03 September 2013 (has links)
No description available.
62

A New Model of Roche Lobe Overflow for Short-period Gaseous Planets and Binary Stars

Jackson, Brian, Arras, Phil, Penev, Kaloyan, Peacock, Sarah, Marchant, Pablo 24 January 2017 (has links)
Some close-in gaseous exoplanets are nearly in Roche lobe contact, and previous studies show that tidal decay can drive hot Jupiters into contact during the main sequence of their host stars. Improving on a previous model, we present a revised model for mass transfer in a semidetached binary system that incorporates an extended atmosphere around the donor and allows for an arbitrary mass ratio. We apply this new formalism to hypothetical, confirmed, and candidate planetary systems to estimate mass-loss rates and compare with models of evaporative mass loss. Overflow may be significant for hot Neptunes out to periods of similar to 2 days, while for hot Jupiters, it may only be important inward of 0.5 days. We find that CoRoT-24 b may be losing mass at a rate of more than an Earth mass in a gigayear. The hot Jupiter WASP-12 b may lose an Earth mass in a megayear, while the putative planet PTFO8-8695 orbiting a T Tauri star might shed its atmosphere in a few megayears. We point out that the orbital expansion that can accompany mass transfer may be less effective than previously considered because the gas accreted by the host star removes some of the angular momentum from the orbit, but simple scaling arguments suggest that the Roche lobe overflow might remain stable. Consequently, the recently discovered small planets in ultrashort periods (< 1 day) may not be the remnants of hot Jupiters/Neptunes. The new model presented here has been incorporated into Modules for Experiments in Stellar Astrophysics (MESA).
63

The International Deep Planet Survey

Galicher, R., Marois, C., Macintosh, B., Zuckerman, B., Barman, T., Konopacky, Q., Song, I., Patience, J., Lafrenière, D., Doyon, R., Nielsen, E. L. 13 October 2016 (has links)
Context. Radial velocity and transit methods are effective for the study of short orbital period exoplanets but they hardly probe objects at large separations for which direct imaging can be used. Aims. We carried out the international deep planet survey of 292 young nearby stars to search for giant exoplanets and determine their frequency. Methods. We developed a pipeline for a uniform processing of all the data that we have recorded with NIRC2/Keck II, NIRI/Gemini North, NICI/Gemini South, and NACO/VLT for 14 yr. The pipeline first applies cosmetic corrections and then reduces the speckle intensity to enhance the contrast in the images. Results. The main result of the international deep planet survey is the discovery of the HR8799 exoplanets. We also detected 59 visual multiple systems including 16 new binary stars and 2 new triple stellar systems, as well as 2279 point-like sources. We used Monte Carlo simulations and the Bayesian theorem to determine that 1.05(-0.70)(+2.80)% of stars harbor at least one giant planet between 0.5 and 14 MJ and between 20 and 300AU. This result is obtained assuming uniform distributions of planet masses and semi-major axes. If we consider power law distributions as measured for close-in planets instead, the derived frequency is 2.30(-1.55)(+5.95)%, recalling the strong impact of assumptions on Monte Carlo output distributions. We also find no evidence that the derived frequency depends on the mass of the hosting star, whereas it does for close-in planets. Conclusions. The international deep planet survey provides a database of confirmed background sources that may be useful for other exoplanet direct imaging surveys. It also puts new constraints on the number of stars with at least one giant planet reducing by a factor of two the frequencies derived by almost all previous works.
64

Phase Curves of WASP-33b and HD 149026b and a New Correlation between Phase Curve Offset and Irradiation Temperature

Zhang, Michael, Knutson, Heather A., Kataria, Tiffany, Schwartz, Joel C., Cowan, Nicolas B., Showman, Adam P., Burrows, Adam, Fortney, Jonathan J., Todorov, Kamen, Desert, Jean-Michel, Agol, Eric, Deming, Drake 24 January 2018 (has links)
We present new 3.6 and 4.5 mu m Spitzer phase curves for the highly irradiated hot Jupiter WASP-33b and the unusually dense Saturn-mass planet HD 149026b. As part of this analysis, we develop a new variant of pixel-level decorrelation that is effective at removing intrapixel sensitivity variations for long observations (>10 hr) where the position of the star can vary by a significant fraction of a pixel. Using this algorithm, we measure eclipse depths, phase amplitudes, and phase offsets for both planets at 3.6 and 4.5 mu m. We use a simple toy model to show that WASP-33b's phase offset, albedo, and heat recirculation efficiency are largely similar to those of other hot Jupiters despite its very high irradiation. On the other hand, our fits for HD 149026b prefer a very high albedo. We also compare our results to predictions from general circulation models, and we find that while neither planet matches the models well, the discrepancies for HD 149026b are especially large. We speculate that this may be related to its high bulk metallicity, which could lead to enhanced atmospheric opacities and the formation of reflective cloud layers in localized regions of the atmosphere. We then place these two planets in a broader context by exploring relationships between the temperatures, albedos, heat transport efficiencies, and phase offsets of all planets with published thermal phase curves. We find a striking relationship between phase offset and irradiation temperature: the former drops with increasing temperature until around 3400 K and rises thereafter. Although some aspects of this trend are mirrored in the circulation models, there are notable differences that provide important clues for future modeling efforts.
65

Multiple Disk Gaps and Rings Generated by a Single Super-Earth

Dong, Ruobing, Li, Shengtai, Chiang, Eugene, Li, Hui 13 July 2017 (has links)
We investigate the observational signatures of super-Earths (i.e., planets with. Earth-to-Neptune. mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (alpha (sic) 10(-4)), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the. system parameters, additional rings may manifest for a single planet. A double gap located at tens of au. from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of similar to 0".03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as. HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.
66

Towards understanding the nature and diversity of small planets in the universe : discovery and initial characterization of Wolf 503 b and LP 791-18 d

Peterson, Merrin 05 1900 (has links)
Avec la découverte de milliers de nouvelles planètes au cours des vingt dernières années, une nouvelle population complexe de planètes plus petites que Neptune et plus grandes que la Terre a été découverte. Ces planètes se divisent en deux groupes : les plus grandes sub-Neptunes avec des atmosphères étendues dominées par H, et les plus petites super-Terres qui ont tout au plus des atmosphères minces. Cette division peut être expliquée par une variété de mécanismes, y compris la photoévaporation, la perte de masse alimentée par le noyau, et la formation de gaz pauvres et vides : la population de petites planètes est probablement façonnée par une combinaison de ces mécanismes qui peut dépendre du type stellaire. Dans ce travail, nous décrivons la découverte de deux nouvelles planètes qui sont bien adaptées à l'étude de la nature de la population des petites planètes : Wolf 503 b et LP 791-18 d. Wolf 503 b est une planète de \(2.03^{+0.08}_{-0.07} R_{\oplus}\) orbitant autour de l'étoile brillante (\(J=8.32\) mag), proche (\(D=44.5\) pc) à mouvement propre élevé K3.5V Wolf 503 (EPIC 212779563). Nous confirmons que la signature du transit K2 est planétaire en utilisant à la fois des images d'archives et des images d'optique adaptative à haut contraste de l'observatoire Palomar. Son rayon place Wolf 503b directement entre les populations de super-Terre et de sub-Neptune, un rayon auquel les planètes sont rarement trouvées et la composition de masse attendue est ambiguë, et la luminosité de l'étoile hôte fait de Wolf 503b une cible de choix pour le suivi des vitesses radiales et la spectroscopie de transit. La deuxième planète que nous présentons est une planète de taille terrestre orbitant autour de la naine froide M6 LP 791-18. La nouvelle planète d rejoint un système bien aligné avec au moins deux autres planètes, la plus externe étant une sous-Neptune, offrant une occasion unique à ce jour d'étudier un système avec une planète de taille terrestre tempérée et une sous-Neptune qui a conservé son enveloppe gazeuse ou volatile. La découverte de LP 791-18d permet de mesurer la masse du système grâce aux variations du temps de transit, et nous trouvons une masse de \( {9.3_{-1.4}^{+1.5}\,M_\oplus}\) pour la sub-Neptune LP 791-18c et une masse de \( {0.8_{-0.4}^{+0.5}\,M_\oplus}\) pour l'exo-Terre LP 791-18d (\({<2.3 M_{\oplus}}\) à 3\( {\sigma}\)). La planète est également soumise à un fort réchauffement continu par les marées, ce qui peut entraîner une activité géologique et un dégazage volcanique. Pour l'avenir, LP 791-18d et Wolf 503b offrent des opportunités uniques d'étudier les origines et la conservation des atmosphères des petites planètes. / With the discovery of thousands of new planets in the past twenty years, a new and complex population of planets has been discovered which are smaller than Neptune and larger than the Earth. These planets are split into two groups: the larger sub-Neptunes with extended H-dominated atmospheres, and the smaller super-Earths which have at most thin atmospheres. This division can be explained by a variety of mechanisms, including photoevaporation, core-powered mass-loss, and gas-poor and gas-empty formation: the small-planet population is likely shaped by a combination of these which may depend on stellar type. In this work we describe the discovery of two new planets which are well-suited to investigating the nature of the small planet population: Wolf 503b and LP 791-18d. Wolf 503 b is a \(2.03^{+0.08}_{-0.07} R_{\oplus}\) planet orbiting the bright (\(J=8.32\) mag), nearby (\(D=44.5\) pc) high proper motion K3.5V star Wolf 503 (EPIC 212779563). We confirm that the K2 transit signature is planetary using both archival images and high-contrast adaptive optics images from the Palomar observatory. Its radius places Wolf 503 b directly between the populations of super-Earths and sub-Neptunes, a radius at which planets are rarely found and the expected bulk composition is ambiguous, and the brightness of the host star makes Wolf 503b a prime target for radial velocity follow-up and transit spectroscopy. The second planet we introduce is an Earth-sized planet orbiting the cool M6 dwarf LP 791-18. The new planet d joins a well-aligned system with at least two more planets, the outermost being a sub-Neptune, providing a to-date unique opportunity to investigate a system with a temperate Earth-sized planet and a sub-Neptune that retained its gas or volatile envelope. The discovery of LP 791-18d makes the system amenable to mass measurements via transit timing variations, and we find a mass of \( {9.3_{-1.4}^{+1.5}\,M_\oplus}\) for the sub-Neptune LP 791-18c and a mass of \( {0.8_{-0.4}^{+0.5}\,M_\oplus}\) for the exo-Earth LP 791-18d (\( {<2.3 M_{\oplus}}\) at 3\( {\sigma}\)). The planet is also subject to strong continued tidal heating, which may result in geological activity and volcanic outgassing. Looking forward, LP 791-18d and Wolf 503b offer unique opportunities to study the origins and retention of small-planet atmospheres.
67

Elliptical instability of compressible flow and dissipation in rocky planets for strong tidal forcing

Clausen, Niels 16 December 2015 (has links)
No description available.
68

DETECTION OF H2O AND EVIDENCE FOR TiO/VO IN AN ULTRA-HOT EXOPLANET ATMOSPHERE

Evans, Thomas M., Sing, David K., Wakeford, Hannah R., Nikolov, Nikolay, Ballester, Gilda E., Drummond, Benjamin, Kataria, Tiffany, Gibson, Neale P., Amundsen, David S., Spake, Jessica 21 April 2016 (has links)
We present a primary transit observation for the ultra-hot (T-eq similar to 2400 K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 mu m wavelength range. The 1.4 mu m water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric light curves taken in the B, r', and z' filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 mu m wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
69

THE DEPLETION OF WATER DURING DISPERSAL OF PLANET-FORMING DISK REGIONS

Banzatti, A., Pontoppidan, K. M., Salyk, C., Herczeg, G. J., van Dishoeck, E. F., Blake, G. A. 10 January 2017 (has links)
We present a new velocity-resolved survey of 2.9 mu m spectra of hot H2O and OH gas emission from protoplanetary disks, obtained with the Cryogenic Infrared Echelle Spectrometer at the VLT (R similar to 96,000). With the addition of archival Spitzer-IRS spectra, this is the most comprehensive spectral data set of water vapor emission from disks ever assembled. We provide line fluxes at 2.9-33 mu m that probe from the dust sublimation radius at similar to 0.05 au out to the region of the water snow line. With a combined data set for 55 disks, we find a new correlation between H2O line fluxes and the radius of CO gas emission, as measured in velocity-resolved 4.7 mu m spectra (R-co), which probes molecular gaps in inner disks. We find that H2O emission disappears from 2.9 mu m (hotter water) to 33 mu m (colder water) as R-co increases and expands out to the snow line radius. These results suggest that the infrared water spectrum is a tracer of inside-out water depletion within the snow line. It also helps clarify an unsolved discrepancy between water observations and models by finding that disks around stars of M-star > 1.5M(circle dot) generally have inner gaps with depleted molecular gas content. We measure radial trends in H2O, OH, and CO line fluxes that can be used as benchmarks for models to study the chemical composition and evolution of planet-forming disk regions at 0.05-20 au. We propose that JWST spectroscopy of molecular-gas may be used as a probe of inner disk gas depletion, complementary to the larger gaps and holes detected by direct imaging and by ALMA.
70

Near-infrared scattered light properties of the HR 4796 A dust ring

Milli, J., Vigan, A., Mouillet, D., Lagrange, A.-M., Augereau, J.-C., Pinte, C., Mawet, D., Schmid, H. M., Boccaletti, A., Matrà, L., Kral, Q., Ertel, S., Chauvin, G., Bazzon, A., Ménard, F., Beuzit, J.-L., Thalmann, C., Dominik, C., Feldt, M., Henning, T., Min, M., Girard, J. H., Galicher, R., Bonnefoy, M., Fusco, T., de Boer, J., Janson, M., Maire, A.-L., Mesa, D., Schlieder, J. E. 08 March 2017 (has links)
Context. HR4796A is surrounded by a debris disc, observed in scattered light as an inclined ring with a high surface brightness. Past observations have raised several questions. First, a strong brightness asymmetry detected in polarised reflected light has recently challenged our understanding of scattering by the dust particles in this system. Secondly, the morphology of the ring strongly suggests the presence of planets, although no planets have been detected to date. Aims. We aim here at measuring with high accuracy the morphology and photometry of the ring in scattered light, in order to derive the phase function of the dust and constrain its near-infrared spectral properties. We also want to constrain the presence of planets and set improved constraints on the origin of the observed ring morphology. Methods. We obtained high-angular resolution coronagraphic images of the circumstellar environment around HR4796A with VLT/SPHERE during the commissioning of the instrument in May 2014 and during guaranteed-time observations in February 2015. The observations reveal for the first time the entire ring of dust, including the semi-minor axis that was previously hidden either behind the coronagraphic spot or in the speckle noise. Results. We determine empirically the scattering phase function of the dust in the H band from 13.6 degrees to 166.6 degrees. It shows a prominent peak of forward scattering, never detected before, for scattering angles below 30 degrees. We analyse the reflectance spectra of the disc from the 0.95 mu m to 1.6 mu m, confirming the red colour of the dust, and derive detection limits on the presence of planetary mass objects. Conclusions. We confirm which side of the disc is inclined towards the Earth. The analysis of the phase function, especially below 45 degrees, suggests that the dust population is dominated by particles much larger than the observation wavelength, of about 20 mu m. Compact Mie grains of this size are incompatible with the spectral energy distribution of the disc, however the observed rise in scattering efficiency beyond 50 degrees points towards aggregates which could reconcile both observables. We do not detect companions orbiting the star, but our high-contrast observations provide the most stringent constraints yet on the presence of planets responsible for the morphology of the dust.

Page generated in 0.3882 seconds