Spelling suggestions: "subject:"planets anda satellite"" "subject:"planets ando satellite""
101 |
What is the Mass of a Gap-opening Planet?Dong, Ruobing, Fung, Jeffrey 24 January 2017 (has links)
High-contrast imaging instruments such as GPI and SPHERE are discovering gap structures in protoplanetary disks at an ever faster pace. Some of these gaps may be opened by planets forming in the disks. In order to constrain planet formation models using disk observations, it is crucial to find a robust way to quantitatively back out the properties of the gap-opening planets, in particular their masses, from the observed gap properties, such as their depths and widths. Combining 2D and 3D hydrodynamics simulations with 3D radiative transfer simulations, we investigate the morphology of planet-opened gaps in near-infrared scattered-light images. Quantitatively, we obtain correlations that directly link intrinsic gap depths and widths in the gas surface density to observed depths and widths in images of disks at modest inclinations under finite angular resolution. Subsequently, the properties of the surface density gaps enable us to derive the disk scale height at the location of the gap h, and to constrain the quantity M-p(2)/alpha, where Mp is the mass of the gap-opening planet and a characterizes the viscosity in the gap. As examples, we examine the gaps recently imaged by VLT/SPHERE, Gemini/GPI, and Subaru/HiCIAO in HD 97048, TW Hya, HD 169142, LkCa. 15, and RX J1615.3-3255. Scale heights of the disks and possible masses of the gap-opening planets are derived assuming each gap is opened by a single planet. Assuming a = 10(-3), the derived planet masses in all cases are roughly between 0.1 and 1M(J).
|
102 |
Effet de la structure du disque sur la formation et la migration des planètes / Effect of the disc structure on planets formation and migrationCossou, Christophe 28 November 2013 (has links)
Au delà du système solaire et de ses planètes, nous avons maintenant un catalogue de quasiment 1000 exoplanètes qui illustrent la grande diversité des planètes et des systèmes qu'il est possible de former. Cette diversité est un défi que les modèles de formation planétaire tentent de relever. La migration de type 1 est un des mécanismes pour y parvenir. En fonction des propriétés du disque protoplanétaire, les planètes peuvent s'approcher ou s'éloigner de leur étoile. La grande variété des modèles de disques protoplanétaires permet d'obtenir une grande variété de systèmes planétaires, en accord avec la grande diversité que nous observons déjà pour l'échantillon limité qui nous est accessible. Grâce à des simulations numériques, j'ai pu montrer qu'au sein d'un même disque, il est possible de former des super-Terres ou des noyaux de planètes géantes selon l'histoire de migration d'une population d'embryons. / In addition to the Solar System and its planets, we now have a database of nearly 1000 planets that emphasize the huge diversity of planets and systems that can be formed. This diversity is a challenge for planetary formation models. Type I migration is one of the mechanisms possible to explain this diversity. Depending on disc properties, planets can migrate inward or outward with respect to their host star. The huge parameter space of protoplanetary disc models can form a huge diversity of planetary systems, in agreement with the diversity observed in the nonetheless small sample accessible to us. Thanks to numerical simulations, I showed that within the same disc, it is possible to form super-Earths or giant planet cores, depending on the migration history of an initial population of embryos.
|
103 |
Turbulence-Assisted Planetary Growth : Hydrodynamical Simulations of Accretion Disks and Planet FormationLyra, Wladimir January 2009 (has links)
The current paradigm in planet formation theory is developed around a hierarquical growth of solid bodies, from interstellar dust grains to rocky planetary cores. A particularly difficult phase in the process is the growth from meter-size boulders to planetary embryos of the size of our Moon or Mars. Objects of this size are expected to drift extremely rapid in a protoplanetary disk, so that they would generally fall into the central star well before larger bodies can form. In this thesis, we used numerical simulations to find a physical mechanism that may retain solids in some parts of protoplanetary disks long enough to allow for the formation of planetary embryos. We found that such accumulation can happen at the borders of so-called dead zones. These dead zones would be regions where the coupling to the ambient magnetic field is weaker and the turbulence is less strong, or maybe even absent in some cases. We show by hydrodynamical simulations that material accumulating between the turbulent active and dead regions would be trapped into vortices to effectively form planetary embryos of Moon to Mars mass. We also show that in disks that already formed a giant planet, solid matter accumulates on the edges of the gap the planet carves, as well as at the stable Lagrangian points. The concentration is strong enough for the solids to clump together and form smaller, rocky planets like Earth. Outside our solar system, some gas giant planets have been detected in the habitable zone of their stars. Their wakes may harbour rocky, Earth-size worlds.
|
104 |
CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHYMawet, Dimitri, Choquet, Élodie, Absil, Olivier, Huby, Elsa, Bottom, Michael, Serabyn, Eugene, Femenia, Bruno, Lebreton, Jérémy, Matthews, Keith, Gonzalez, Carlos A. Gomez, Wertz, Olivier, Carlomagno, Brunella, Christiaens, Valentin, Defrère, Denis, Delacroix, Christian, Forsberg, Pontus, Habraken, Serge, Jolivet, Aissa, Karlsson, Mikael, Milli, Julien, Pinte, Christophe, Piron, Pierre, Reggiani, Maddalena, Surdej, Jean, Catalan, Ernesto Vargas 03 January 2017 (has links)
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L' band (3.8 mu m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of similar or equal to 23 au and up to similar or equal to 70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 mu m PAH emission reported earlier. We also see an outward progression in dust location from the L' band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L'-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
|
105 |
Reflected Light of Exoplanets : a case study of WASP-43b using the Hubble Space TelescopeGupta, Prashansa 12 1900 (has links)
Avec près de 4000 exoplanètes connues, le domaine est passé de simplement détecter des exoplanètes à étudier leurs propriétés atmosphériques. Cependant, les spectres en lumières réfléchies de ces objets sont encore mal compris. Les exoplanètes réfléchissent une partie de la lumière qu’elles reçoivent de leur étoile, selon les propriétés de l’atmosphère, ce qui affecte le budget énergétique de la planète. Les Jupiters chaudes, c’est-à-dire des planètes de types Jupiter avec des périodes orbitales très courtes, sont les cibles les plus faciles à observer par spectroscopie des éclipses. L’albédo est une mesure directe de la lumière réfléchie qui peut être mesurée pendant que la planète passe derrière l’étoile hôte. Dans leur cas spécifique, une incohérence apparente, appelée le problème d’albédo des Jupiters chaudes, reste non résolu. Alors que les géantes gazeuses du système solaire ont des albédos de Bond inférieurs aux albédos géométriques, les mesures dans le visible et l’infrarouges pour HD 189733b et HD 209458b indiquent le contraire. Ceci pourrait être expliqué par des albédos géométriques plus élevés à des longueurs d’onde UV/visibles hors de la bande passante de Kepler, mais très peu de mesures existent pour corroborer cela. Ce mémoire présente le spectre de réflexion complet de WASP-43b, incluant 3 mesures d’éclipse obtenues par le HST (290-570 nm) ainsi que 28 obtenues par la mission TESS (600-1000 nm). Lorsque combinées avec les observations Spitzer ou les observations d’éclipse du JWST à venir, ces mesures répondront à des questions-clés concernant la structure et composition atmosphérique de la planète, le budget énergétique global et sa circulation. / With nearly 4000 exoplanets known, the field has evolved from merely detecting exoplanets to actually probing atmospheric properties. However, reflected light spectra from these objects are still not fully understood. Exoplanets reflect a portion of the light that they receive from the star, the amount of which depends on the properties of the atmosphere and in turn affects the energy budget of the planet. Hot Jupiters, i.e. Jupiter-like planets giants with very short orbital periods are the easiest targets amenable to eclipse spectroscopy. Albedo is a direct measure of reflected light that can be measured while the planet eclipses behind the host star. In the specific case of these intriguing planets, an apparent inconsistency, termed as the hot Jupiter Albedo Problem, remains unsolved. While Solar System gas giants show Bond albedos lower than geometric albedos, the measurements from optical and infrared instruments for HD 189733b and HD 209458b show the opposite. This phenomenon has the potential to be explained by higher geometric albedos at UV/optical wavelengths outside the Kepler bandpass, but very few measurements exist to corroborate this. This thesis presents WASP-43b’s full reflection spectrum, including 3 eclipse measurements obtained by the HST (290-570 nm) along with 28 obtained by the TESS mission (600-1000 nm). When combined with the Spitzer or the upcoming JWST’s eclipse observations, these measurements will answer key questions about the planet’s atmospheric composition and structure, global energy budget and circulation.
|
106 |
Simulações Numéricas Tri-dimensionais de Ventos Magnetizados de Estrelas de Baixa Massa / Three-Dimensional Numerical Simulations of Magnetized Winds of Low-Mass StarsVidotto, Aline de Almeida 16 November 2009 (has links)
O tópico abordado nesta tese é a perda de massa através de ventos coronais magnetizados em estrelas de baixa massa. Ventos estelares têm sido estudados extensivamente há vários anos, tendo inicialmente como foco o vento solar. Atualmente, sabe-se que o campo magnético é essencial na aceleração e aquecimento dos ventos coronais. Apesar do conhecimento detalhado que temos da estrutura magnética do Sol, pouco se sabe sobre a configuração do campo magnético em outras estrelas. Nesta tese, é investigada a estrutura do campo magnético nas coroas de estrelas do tipo solar na Seqüência Principal e de suas predecessoras na pré Seqüência Principal através de simulações numéricas magneto-hidrodinâmicas tri-dimensionais. Aqui, consideramos de forma auto-consistente a interação entre o vento e o campo magnético e vice-versa. Dessa forma, pela interação entre forças magnéticas e forças do vento, consegue-se determinar a configuração do campo magnético e a estrutura dos ventos coronais. Realizamos um estudo de ventos de estrelas do tipo solar e a dependência dos mesmos com o parâmetro beta do plasma (a razão entre as densidades de energia térmica e magnética). Este é o primeiro estudo a realizar tal análise resolvendo as equações tri-dimensionais da magneto-hidrodinâmica ideal. Em nossas simulações, adotamos um parâmetro de aquecimento descrito por gamma, que é responsável pela aceleração térmica do vento. Então, nós analisamos ventos com intensidades de campo magnético nos pólos no intervalo de B0 = 1 a 20 G e mostramos que a estrutura do vento apresenta características que são similares à do vento coronal do Sol. No estado estacionário, a topologia do campo magnético obtida é similar para todos os casos estudados, apresentando uma configuração do tipo helmet streamer, com zonas de linhas fechadas e abertas de campo magnético co-existindo. Intensidades mais altas de campo levam a ventos mais acelerados e mais quentes. O aumento na intensidade do campo gera também uma zona morta maior no vento, i.e., os loops fechados que previnem que a matéria escape da coroa em latitudes menores que ~45 graus se estendem a maiores distâncias da estrela. Além disso, mostramos também que a força de Lorentz gera naturalmente um vento que é dependente da latitude. Ao aumentar a densidade da coroa mantendo B0 = 20 G, mostramos que o sistema volta a apresentar ventos menos acelerados e mais frios. Para um valor fixo de gamma, mostramos que o parâmetro essencial na determinação do perfil de velocidade do vento é o parâmetro beta calculado na base da coroa. Dessa forma, acredita-se que haja um grupo de ventos magnetizados que apresenta a mesma velocidade terminal independentemente das densidades de energia térmica ou magnética, desde que o parâmetro beta seja o mesmo. No entanto, essa degenerescência pode ser removida ao se comparar outros parâmetros físicos do vento, tal como a taxa de perda de massa. Nós também analisamos a influência do gamma nos nossos resultados e mostramos que ele é importante na determinação da estrutura do vento. Além disso, investigamos ventos magnetizados de estrelas de baixa massa da pré Seqüência Principal. Em particular, analisamos sob quais circunstâncias tais estrelas apresentam estruturas magnéticas alongadas (e.g., helmet streamers, proeminências do tipo slingshot, etc). Focamos especialmente em estrelas do tipo T Tauri fracas, uma vez que o tênue disco de acreção, quando presente ao redor de tais estrelas, não deve causar forte influência na estrutura do vento estelar e nem na do campo magnético coronal. Nós mostramos que o parâmetro beta do plasma é um fator decisivo na configuração do campo magnético do vento estelar. Usando parâmetros iniciais adequados ao que se é observado para tais estrelas, nós mostramos que a configuração do campo magnético pode variar entre uma configuração semelhante à de um dipolo e uma configuração com linhas fortemente colimadas em torno do eixo polar e streamers fechados ao redor do equador (configuração de multi-componentes para o campo magnético). Mostramos que as estruturas alongadas do campo magnético somente estão presentes se o parâmetro beta do plasma na base da coroa é beta0 << 1. Usando nossos modelos magneto-hidrodinâmicos, auto-consistentes, tri-dimensionais, estimamos para ventos de estrelas da pré Seqüência Principal a escala temporal de migração planetária devido a forças de arraste exercidas pelo vento em um planeta tipo hot-Jupiter (i.e., um planeta gigante que orbita muito próximo da estrela). Nosso modelo sugere que os ventos estelares de coroas com multi-componentes de campo magnético não têm influências significativas na migração de hot-Jupiters. / The subject of this thesis is the mass loss of low-mass stars through magnetized coronal winds. Stellar winds have been a topic of extensive research in Astrophysics for a long time, and their first investigations focused on the solar wind. Nowadays, we know that the magnetic field plays a crucial role in the acceleration and heating of coronal winds. Despite of the knowledge of the fine structure of the solar magnetic field, much less information is known regarding the configuration of the magnetic field in other stars. In this thesis, we investigate the structure of the magnetic field in the coronae of solar-like stars and young stars by means of three-dimensional magnetohydrodynamical numerical simulations. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. We investigate solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional magnetohydrodynamics equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from B0 = 1 to 20 G and we show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger ``dead zone\'\' in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B0 = 20 G, the system recovers to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We also analyze the influence of gamma in our results and we show that it is also important in determining the wind structure. We further investigate magnetized stellar winds of low-mass pre-main-sequence stars. In particular we analyze under which circumstances these stars present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind neither on the coronal magnetic field. We show that the plasma-beta parameter is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta0 << 1. Using our self-consistent three-dimensional magnetohydrodynamical model, we estimate for the stellar winds of pre-main-sequence stars the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter (i.e., on a giant planet that orbits very close to the star). Our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on the migration of hot-Jupiters.
|
107 |
Simulações Numéricas Tri-dimensionais de Ventos Magnetizados de Estrelas de Baixa Massa / Three-Dimensional Numerical Simulations of Magnetized Winds of Low-Mass StarsAline de Almeida Vidotto 16 November 2009 (has links)
O tópico abordado nesta tese é a perda de massa através de ventos coronais magnetizados em estrelas de baixa massa. Ventos estelares têm sido estudados extensivamente há vários anos, tendo inicialmente como foco o vento solar. Atualmente, sabe-se que o campo magnético é essencial na aceleração e aquecimento dos ventos coronais. Apesar do conhecimento detalhado que temos da estrutura magnética do Sol, pouco se sabe sobre a configuração do campo magnético em outras estrelas. Nesta tese, é investigada a estrutura do campo magnético nas coroas de estrelas do tipo solar na Seqüência Principal e de suas predecessoras na pré Seqüência Principal através de simulações numéricas magneto-hidrodinâmicas tri-dimensionais. Aqui, consideramos de forma auto-consistente a interação entre o vento e o campo magnético e vice-versa. Dessa forma, pela interação entre forças magnéticas e forças do vento, consegue-se determinar a configuração do campo magnético e a estrutura dos ventos coronais. Realizamos um estudo de ventos de estrelas do tipo solar e a dependência dos mesmos com o parâmetro beta do plasma (a razão entre as densidades de energia térmica e magnética). Este é o primeiro estudo a realizar tal análise resolvendo as equações tri-dimensionais da magneto-hidrodinâmica ideal. Em nossas simulações, adotamos um parâmetro de aquecimento descrito por gamma, que é responsável pela aceleração térmica do vento. Então, nós analisamos ventos com intensidades de campo magnético nos pólos no intervalo de B0 = 1 a 20 G e mostramos que a estrutura do vento apresenta características que são similares à do vento coronal do Sol. No estado estacionário, a topologia do campo magnético obtida é similar para todos os casos estudados, apresentando uma configuração do tipo helmet streamer, com zonas de linhas fechadas e abertas de campo magnético co-existindo. Intensidades mais altas de campo levam a ventos mais acelerados e mais quentes. O aumento na intensidade do campo gera também uma zona morta maior no vento, i.e., os loops fechados que previnem que a matéria escape da coroa em latitudes menores que ~45 graus se estendem a maiores distâncias da estrela. Além disso, mostramos também que a força de Lorentz gera naturalmente um vento que é dependente da latitude. Ao aumentar a densidade da coroa mantendo B0 = 20 G, mostramos que o sistema volta a apresentar ventos menos acelerados e mais frios. Para um valor fixo de gamma, mostramos que o parâmetro essencial na determinação do perfil de velocidade do vento é o parâmetro beta calculado na base da coroa. Dessa forma, acredita-se que haja um grupo de ventos magnetizados que apresenta a mesma velocidade terminal independentemente das densidades de energia térmica ou magnética, desde que o parâmetro beta seja o mesmo. No entanto, essa degenerescência pode ser removida ao se comparar outros parâmetros físicos do vento, tal como a taxa de perda de massa. Nós também analisamos a influência do gamma nos nossos resultados e mostramos que ele é importante na determinação da estrutura do vento. Além disso, investigamos ventos magnetizados de estrelas de baixa massa da pré Seqüência Principal. Em particular, analisamos sob quais circunstâncias tais estrelas apresentam estruturas magnéticas alongadas (e.g., helmet streamers, proeminências do tipo slingshot, etc). Focamos especialmente em estrelas do tipo T Tauri fracas, uma vez que o tênue disco de acreção, quando presente ao redor de tais estrelas, não deve causar forte influência na estrutura do vento estelar e nem na do campo magnético coronal. Nós mostramos que o parâmetro beta do plasma é um fator decisivo na configuração do campo magnético do vento estelar. Usando parâmetros iniciais adequados ao que se é observado para tais estrelas, nós mostramos que a configuração do campo magnético pode variar entre uma configuração semelhante à de um dipolo e uma configuração com linhas fortemente colimadas em torno do eixo polar e streamers fechados ao redor do equador (configuração de multi-componentes para o campo magnético). Mostramos que as estruturas alongadas do campo magnético somente estão presentes se o parâmetro beta do plasma na base da coroa é beta0 << 1. Usando nossos modelos magneto-hidrodinâmicos, auto-consistentes, tri-dimensionais, estimamos para ventos de estrelas da pré Seqüência Principal a escala temporal de migração planetária devido a forças de arraste exercidas pelo vento em um planeta tipo hot-Jupiter (i.e., um planeta gigante que orbita muito próximo da estrela). Nosso modelo sugere que os ventos estelares de coroas com multi-componentes de campo magnético não têm influências significativas na migração de hot-Jupiters. / The subject of this thesis is the mass loss of low-mass stars through magnetized coronal winds. Stellar winds have been a topic of extensive research in Astrophysics for a long time, and their first investigations focused on the solar wind. Nowadays, we know that the magnetic field plays a crucial role in the acceleration and heating of coronal winds. Despite of the knowledge of the fine structure of the solar magnetic field, much less information is known regarding the configuration of the magnetic field in other stars. In this thesis, we investigate the structure of the magnetic field in the coronae of solar-like stars and young stars by means of three-dimensional magnetohydrodynamical numerical simulations. We self-consistently take into consideration the interaction of the outflowing wind with the magnetic field and vice versa. Hence, from the interplay between magnetic forces and wind forces, we are able to determine the configuration of the magnetic field and the structure of the coronal winds. We investigate solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional magnetohydrodynamics equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from B0 = 1 to 20 G and we show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. The increase of the field intensity generates a larger ``dead zone\'\' in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B0 = 20 G, the system recovers to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite of its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We also analyze the influence of gamma in our results and we show that it is also important in determining the wind structure. We further investigate magnetized stellar winds of low-mass pre-main-sequence stars. In particular we analyze under which circumstances these stars present elongated magnetic features (e.g., helmet streamers, slingshot prominences, etc). We focus on weak-lined T Tauri stars, as the presence of the tenuous accretion disk is not expected to have strong influence on the structure of the stellar wind neither on the coronal magnetic field. We show that the plasma-beta parameter is a decisive factor in defining the magnetic configuration of the stellar wind. Using initial parameters within the observed range for these stars, we show that the coronal magnetic field configuration can vary between a dipole-like configuration and a configuration with strong collimated polar lines and closed streamers at the equator (multicomponent configuration for the magnetic field). We show that elongated magnetic features will only be present if the plasma-beta parameter at the coronal base is beta0 << 1. Using our self-consistent three-dimensional magnetohydrodynamical model, we estimate for the stellar winds of pre-main-sequence stars the timescale of planet migration due to drag forces exerted by the stellar wind on a hot-Jupiter (i.e., on a giant planet that orbits very close to the star). Our model suggests that the stellar wind of these multicomponent coronae are not expected to have significant influence on the migration of hot-Jupiters.
|
Page generated in 0.0844 seconds