• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 101
  • 29
  • 21
  • 19
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 4
  • 1
  • 1
  • Tagged with
  • 172
  • 172
  • 30
  • 27
  • 25
  • 18
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effect of stage of growth and certain environmental conditions on the carotene and crude protein content of alfalfa (Medicago sativa L.) and medium red clover (Trifolium pratense L.)

Hatcher, William Barnette, January 1952 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1952. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 53-56).
72

Isolation and characterization of second protein L-ISOASPARTATE METHYLTRANSFERASE gene in Arabidopsis thaliana

Xu, Qilong, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Kentucky, 2004. / Title from document title page (viewed on June 22, 2006). Document formatted into pages; contains viii, 116 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 103-114).
73

Identificação e caracterização de proteinas expressas no espaço intercelular de folhas de Theobroma cacao na interação com Moniliophthora perniciosa / Identification and characterization of proteins expressed in the intercellular space of leves from Theobroma cacao infected by Moniliophthora perniciosa

Pirovani, Carlos Priminho 30 July 2008 (has links)
Orientadores: Gonçalo Amarante Guimarães Pereira, Julio Cezar de Mattos Cascardo / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-11T20:47:57Z (GMT). No. of bitstreams: 1 Pirovani_CarlosPriminho_D.pdf: 2183526 bytes, checksum: e9f5bfca7c6a1b7ac43410251e61f2d3 (MD5) Previous issue date: 2008 / Doutorado / Genetica de Microorganismos / Doutor em Genetica e Biologia Molecular
74

Potato tuber protein and its manipulation by chimeral disassembly using specific tissue explantation for somatic embryogenesis

Ortiz-Medina, Estela. January 2006 (has links)
No description available.
75

Thermal and surface properties of crystalline and non-crystalline legume seed proteins

Di Lollo, Antonio B. January 1990 (has links)
No description available.
76

Changes in storage proteins and nucleic acids during development of barley endosperm

Hasell, Yvonne P. C. (Yvonne Paulene Claudette) January 1975 (has links)
No description available.
77

Fractionation and characterization of proteins from coconut milk

Sumual, Maria Fransisca January 1994 (has links)
No description available.
78

Effect of whey protein fortification on selected quality characteristics of some formulated tomato-whey beverages /

Mitchell, Muriel January 1986 (has links)
No description available.
79

Manipulation of nitrogen sink-source relationship in plants.

January 2006 (has links)
Chiao Ying Ann. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 127-140). / Abstracts in English and Chinese. / Thesis Committee --- p.I / Statement --- p.II / Abstract --- p.III / 摘要 --- p.V / Acknowledgements --- p.VII / Abbreviations --- p.IX / Abbreviation of chemicals --- p.XI / Table of Contents --- p.XII / List of figures and tables --- p.XVIII / Chapter Chapter 1. --- Literature review / Chapter 1.1 --- Significances of manipulation of nitrogen sink-source relationship --- p.1 / Chapter 1.2 --- Nitrogen sink-source relationship in plants --- p.2 / Chapter 1.3 --- Aspartate family amino acid metabolism --- p.5 / Chapter 1.3.1 --- Asparagine metabolism --- p.9 / Chapter 1.3.1.1 --- "Asparagine synthetase (AS, EC 6.3.5.4)" --- p.9 / Chapter 1.3.1.2 --- "Asparaginase (ANS, EC 3.5.1.1)" --- p.10 / Chapter 1.3.2 --- Metabolism of aspartate-derived essential amino acids --- p.10 / Chapter 1.3.2.1 --- "Aspartate kinase (AK, EC 2.7.2.4)" --- p.10 / Chapter 1.3.2.2 --- "Homoserine dehydrogenase (HSD, EC 1.1.1.3)" --- p.12 / Chapter 1.3.2.3 --- "Dihydrodipicolinate synthase (DHPS, EC 4.2.1.52)" --- p.13 / Chapter 1.3.2.4 --- "Lysine a-ketoglutarate reductase (LKR, EC 1.5.1.7)" --- p.14 / Chapter 1.3.2.5 --- "Threonine synthase (TS, EC 4.2.3.1)" --- p.15 / Chapter 1.3.2.6 --- Cystathionine γ-synthase (CGS,EC 2.5.1.48) --- p.16 / Chapter 1.3.2.7 --- Threonine deaminase (TD,EC 4.3.1.19) --- p.17 / Chapter 1.4 --- Previous attempts to manipulate seed protein quantity and quality --- p.18 / Chapter 1.4.1 --- Enhancement of amino acids transported from source to sink --- p.18 / Chapter 1.4.2 --- Redirection of metabolic pathways to increase target amino acids --- p.19 / Chapter 1.4.2.1 --- Production of aspartate by Aspartate Aminotransferase (AAT) --- p.24 / Chapter 1.4.2.2 --- Deregulation of AK to increase the common substrate for all essential aspartate family amino acids --- p.25 / Chapter 1.4.2.3 --- Inhibition of TS and enhancement of CGS to increase Met biosynthesis --- p.25 / Chapter 1.4.2.3.1 --- Inhibition of TS --- p.26 / Chapter 1.4.2.3.2 --- Enhancement of CGS --- p.26 / Chapter 1.4.2.4 --- Deregulation of DHPS and reduction of lysine catabolism to increase lysine content --- p.27 / Chapter 1.4.2.4.1 --- Deregulation of DHPS --- p.28 / Chapter 1.4.2.4.2 --- Reduction of Lys catabolism --- p.29 / Chapter 1.4.2.3.3 --- Deregulation of DHPS and reduction of LKR --- p.29 / Chapter 1.4.3 --- Expression of seed storage proteins to entrap the free amino acids --- p.30 / Chapter 1.5 --- Expression of multiple transgenes in plants --- p.34 / Chapter 1.5.1 --- Significance of multiple genes manipulation in seed quality improvement --- p.34 / Chapter 1.5.2 --- Difficulties in introduction of multiple genes into plant genomes --- p.34 / Chapter 1.5.3 --- Recent advances in introduction of multiple genes into plant genome --- p.35 / Chapter 1.6 --- Global nitrogen regulators in plants --- p.36 / Chapter 1.6.1 --- Global regulation of nitrogen metabolism --- p.36 / Chapter 1.6.2 --- General amino acid control by GCN system --- p.38 / Chapter 1.6.3 --- General amino acid control in plants --- p.39 / Chapter 1.6.4 --- GCN system in plants --- p.41 / Chapter 1.7 --- Hypothesis and specific objectives of this study --- p.42 / Chapter Chapter 2 --- Materials and methods --- p.46 / Chapter 2.1 --- Materials --- p.46 / Chapter 2.1.1 --- "Vectors, bacterial strains and plants" --- p.46 / Chapter 2.1.2 --- Chemicals and reagents used --- p.49 / Chapter 2.1.3 --- "Buffer, solution, gel and medium" --- p.49 / Chapter 2.1.4 --- Commercial kits used --- p.49 / Chapter 2.1.5 --- Equipments and facilities used --- p.49 / Chapter 2.2 --- Methods --- p.50 / Chapter 2.2.1 --- Molecular techniques --- p.50 / Chapter 2.2.1.1 --- DNA gel electrophoresis --- p.59 / Chapter 2.2.1.2 --- PCR technique --- p.50 / Chapter 2.2.1.3 --- Restriction digestion --- p.50 / Chapter 2.2.1.4 --- Ligation (for sticky-end ligation) --- p.51 / Chapter 2.2.1.5 --- DNA purification --- p.51 / Chapter 2.2.1.6 --- DNA sequencing --- p.51 / Chapter 2.2.1.7 --- Transformation of competent E. coli cells --- p.52 / Chapter 2.2.1.8 --- Preparation of plasmid from bacterial cells --- p.53 / Chapter 2.2.1.9 --- Transformation of competent Agrobacterium tumefaciens cells --- p.53 / Chapter 2.2.1.10 --- DNA extraction from plant tissue (Small-scale) --- p.54 / Chapter 2.2.1.11 --- RNA extraction from plant tissue --- p.55 / Chapter 2.2.2 --- Growth conditions of A. thaliana --- p.55 / Chapter 2.2.2.1 --- Surface sterilization of A. thaliana seeds --- p.55 / Chapter 2.2.2.2 --- Growing A. thaliana --- p.55 / Chapter 2.2.3 --- Characterization of transgenic A. thaliana with altered sink-source relationship --- p.57 / Chapter 2.2.3.1. --- Determination of amino acid contents in seeds --- p.57 / Chapter 2.2.3.2. --- Expression study of developing siliques of transgenic lines --- p.58 / Chapter 2.2.3.2.1 --- Tagging siliques of different developmental stages --- p.58 / Chapter 2.2.3.2.2 --- Extraction of silique RNA --- p.58 / Chapter 2.2.3.2.3 --- cDNA synthesis --- p.58 / Chapter 2.2.3.2.4 --- Real-time PCR --- p.59 / Chapter 2.2.4 --- Characterization of transgenic A. thaliana overexpressing GCN2 --- p.60 / Chapter 2.2.4.1 --- Gene expression study of vegetative tissues by real-time PCR --- p.60 / Chapter 2.2.4.2 --- Gene expression study of developing siliques by real-time PCR --- p.61 / Chapter 2.2.5 --- Making transgenic A. thaliana --- p.61 / Chapter 2.2.5.1 --- Cloning of multigene construct --- p.61 / Chapter 2.2.5.1.1 --- Subcloning of target genes into donor vectors --- p.61 / Chapter 2.2.5.1.1.1 --- Cloning of LRP into donor vector VS --- p.61 / Chapter 2.2.5.1.1.2 --- Cloning of dapA into donor vector SV --- p.64 / Chapter 2.2.5.1.1.3 --- Cloning of ansB into donor vector VS --- p.67 / Chapter 2.2.5.1.1.4 --- Cloning of antisense LKR fragment into donor vector SV --- p.70 / Chapter 2.2.5.1.2 --- Preparation of phosphorylated linkers --- p.73 / Chapter 2.2.5.1.3 --- Introduction of target genes to acceptor vector --- p.73 / Chapter 2.2.5.2 --- Agrobacterium-mediated transformation of A. thaliana via Vacuum infiltration --- p.78 / Chapter 2.2.5.3 --- Screening of transformants --- p.79 / Chapter Chapter 3. --- Results --- p.80 / Chapter 3.1 --- Characterization of transgenic lines with altered sink-source relationship --- p.80 / Chapter 3.1.1 --- Amino acid analysis of mature seeds of transgenic lines --- p.80 / Chapter 3.1.1.1 --- Aspartate family amino acids levels remain steady in seeds of transgenic plants --- p.83 / Chapter 3.1.1.2 --- Increase in seed Met content in Met-rich protein expressing transgenic plants --- p.85 / Chapter 3.1.1.3 --- Increase in seed Lys content in phas-dapA/phas-LRP transgenic plants --- p.87 / Chapter 3.1.2 --- Gene expression study of transgenic line --- p.89 / Chapter 3.1.2.1 --- Down-regulation of akthr1 and akthr2 in transgenic plants with altered N sink-source relationship --- p.89 / Chapter 3.1.2.2 --- Down regulation of GCN2 in transgenic plants with altered N sink-source relationship --- p.90 / Chapter 3.1.2.4 --- Expression study of other genes in aspartate family pathway --- p.90 / Chapter 3.2 --- Characterization of GCN2 overexpressing line --- p.93 / Chapter 3.2.1 --- Gene expression study of seedlings of GCN2 overexpressing plants --- p.93 / Chapter 3.2.1.1 --- Increased GCN2 expression by azaserine treatment --- p.93 / Chapter 3.2.1.2 --- Increased akthrl and akthr2 expression in GCN2 overexpressing plants --- p.96 / Chapter 3.2.1.3 --- Expression study of other genes in aspartate family pathway --- p.96 / Chapter 3.2.2 --- Gene expression study of GCN2 overexpressing plants during seed development --- p.98 / Chapter 3.3 --- Construction of transgenic plants by multigene assembly system --- p.100 / Chapter 3.3.1 --- Successful construction of recombinant plasmid carrying four target genes --- p.100 / Chapter 3.3.2 --- Transformation of A. thaliana with multigene vector --- p.103 / Chapter Chapter 4 --- Discussion --- p.104 / Chapter 4.1 --- Characterization of transgenic plants with altered sink-source relationship of aspartate family amino acid metabolism --- p.104 / Chapter 4.1.1 --- Total content of aspartate family amino acids remains steady in transgenic lines --- p.105 / Chapter 4.1.2 --- Methionine content increases in phas-PN2S and phas-MetL transgenic plants --- p.106 / Chapter 4.1.3 --- Relative lysine content increases in phas-dapA/phas-LRP transgenic plants --- p.107 / Chapter 4.1.4 --- Coordinated regulation of gene expressions of akthrl and akthr2 with GCN2 expression in transgenic plants with altered sink-source relationship --- p.109 / Chapter 4.2 --- GCN system in plants --- p.110 / Chapter 4.2.1 --- Transcriptional regulation of GCN2 in A. thaliana --- p.110 / Chapter 4.2.2 --- Regulation of amino acid biosynthesis by GCN system --- p.111 / Chapter 4.2.2.1 --- Regulation of akthrl and akthr2 by GCN2 --- p.111 / Chapter 4.2.2.2 --- GCN4 homolog in plants? --- p.112 / Chapter 4.2.2.3 --- Regulation of amino acid metabolism by GCN system --- p.113 / Chapter 4.3 --- Generation of transgenic plants with a combination of altered sink- source relationship --- p.114 / Chapter Chapter 5. --- Conclusion and Future Prospective --- p.116 / Appendix I: The major chemicals and reagents used in this research --- p.118 / "Appendix II: Major buffers, solutions and mediums used in this research" --- p.120 / Appendix III: Commercial kits used in this research --- p.125 / Appendix IV: Major equipment and facilities used in this research --- p.126 / References --- p.127
80

Targeting mechanisms of secretory carrier membrane protein 1 in tobacco BY-2 cells. / CUHK electronic theses & dissertations collection

January 2010 (has links)
Brefeldin A (BFA) has been a useful tool for studying organelle dynamics and protein trafficking in plant cells. Using several Golgi (MAN1 and GONST1) and TGN (SCAMP1 and SYP61) fluorescent protein markers as tools, I have showed that BFA-induced aggregates from Golgi apparatus and TGN are morphologically distinct in the same plant cells. In addition, the internalized endosomal marker FM4-64 colocalized with the TGN-derived aggregates but separated from the Golgi aggregates. In the presence of the endocytosis inhibitor tyrphostin A23, SCAMP1 and FM4-64 are largely excluded from the TGN SYP61-positive BFA-induced aggregates, indicating homotypic fusion of TGN rather than de novo endocytic trafficking is important for the formation of TGN/EE-derived BFA-induced aggregates. Since the TGN also serves as an EE receiving materials from plasma membrane continuously, these data therefore support the notion that the secretory Golgi organelle is distinct from the endocytic TGN/EE in response to BFA treatment in plant cells. / Little is known about the trafficking mechanism of plasma membrane (PM) proteins in the endomembrane system of plant cells that contain several membrane-bound organelles including the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN) of early endosome (EE), prevacuolar compartment (PVC) or late endosome (LE). Here, I study the transport pathway and sorting signals of secretory carrier membrane protein 1 (SCAMP1) by following its transient expression in tobacco BY-2 protoplasts and show that SCAMP1 reaches the PM via an ER-Golgi-TGN-PM pathway. Loss-of-function and gain-of-function analysis of various GFP fusions with SCAMP1 mutations further demonstrates that: (1) the cytosolic N terminus of SCAMP1 contains an ER export signal; (2) the transmembrane domain 2 (TMD2) and TMD3 of SCAMP1 are essential for Golgi export; and (3) SCAMP1 TMD1 is essential for TGN-to-PM targeting. Therefore, both the cytosolic N-terminus and TMD sequences of SCAMP1 play integral roles in mediating its transport to the PM via an ER-Golgi-TGN pathway. / Cai, Yi. / Adviser: Liwen Jiang. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 93-102). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.

Page generated in 0.0869 seconds