• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 290
  • 56
  • 52
  • 18
  • 13
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 616
  • 616
  • 150
  • 131
  • 130
  • 126
  • 119
  • 77
  • 76
  • 72
  • 66
  • 66
  • 64
  • 64
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
451

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
452

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
453

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
454

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
455

Rheo-NMR studies of macromolecules : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

Kakubayashi, Motoko January 2008 (has links)
In this thesis, the effects of simple shear flow on macromolecular structure and interactions are investigated in detail via a combination of Nuclear Magnetic Resonance (NMR) spectroscopy and rheology, namely Rheo-NMR. A specially designed NMR couette shear cell and benchtop shear cell, developed in-house, demonstrated that the direct measurement of the above phenomena is possible. First, to determine whether the shear cells were creating simple shear flow, results were reproduced from literature studies of liquid crystal systems which report shear effects on: Cetyl Trimethyl Ammonium Bromide (CTAB) in deuterium oxide, and Poly(gamma-benzyl-L-glutamate) (PBLG) in m-cresol. Next, the possible conformational changes to protein structure brought about by shear were investigated by applying shear to Bovine -lactogobulin ( -Lg). As the protein was sheared, a small, irreversible conformational change was observed by means of one-dimensional and two-dimensional 1H NMR with reasonable reproducibility. However, no observable change was detected by means of light scattering. A large conformational change was observed after shearing a destabilized -Lg sample containing 10% Trifluoroethanol (TFE) (v/v). From an NMR point of view, the sheared state was similar to the structure of -Lg containing large amounts of -helices and, interestingly, similar to the structure of -Lg containing -sheet amyloid fibrils. Gel electrophoresis tests suggested that the changes were caused by hydrophobic interactions. Unfortunately, this proved to be difficult to reproduce. The effect of shear on an inter-macromolecular interaction was investigated by applying shear during an enzyme reaction of pectin methylesterase (PME) on pectin. Experimental method and analysis developments are described in detail. It was observed that under the conditions studied, shear does not interfere with the de-esterification of pectin with two types of PME, which have different action mechanisms at average shear rates up to 1570 s-1.
456

L'émission X : un outil et une sonde pour l'interaction laser -agrégats

Prigent, Christophe January 2004 (has links) (PDF)
In intense laser – cluster interaction, the experimental results show a strong energetic coupling between radiation and matter. We have measured absolute x – ray yields and charge state distributions under well control conditions as a function of physical parameters governing the interaction; namely laser intensity, pulse duration, wavelength or polarization state of the laser light, the size and the species of the clusters (Ar, Kr, Xe). We have highlighted, for the first time, an intensity threshold in the x – ray production very low (~ 2.1014 W/cm2 for a pulse duration of 300 fs) which can results from an effect of the dynamical polarisation of clusters in an intense electric field. A weak dependence with the wavelength (400 nm / 800 nm) on the absolute x – ray yields has been found. Moreover, we have observed a saturation of the x – ray emission probability below a critical cluster size.
457

Soleil et microphysique des plasmas naturels

Briand, Carine 29 October 2010 (has links) (PDF)
Le mémoire se compose de deux grands chapitres. Le premier traite de mes travaux de recherche et instrumentaux en physique solaire. Il traite notamment des mesures de spectro-polarimétrie dans le domaine visible, appliquées à l'études de l'évolution spatiale et temporelle du champ magnétique des régions actives. Le second chapitre aborde mes travaux en physique des plasma spatiaux. Il présente les aspects de simulations numériques cinétiques (Vlasov) appliqués à l'étude des structures cohérentes observées dans le vent solaire et la magnétosphère terrestre. Il expose également les résultats de l'exploitation des données radio de la mission STEREO.
458

Etude d'une méthode d'amortissement des disruptions d'un plasma de tokamak

Reux, Cédric 04 November 2010 (has links) (PDF)
Les disruptions sont des pertes violentes et très rapides (environ 20 ms) du confinement des plasmas de tokamak qui peuvent conduire à des endommagements de la structure du tokamak. Elles génèrent des charges thermiques sur les composants face au plasma, des forces électromagnétiques dans les structures de la machine et produisent des électrons découplés relativistes pouvant perforer l'enceinte à vide. Pour des futurs réacteurs, il sera indispensable d'amortir ces effets. L'injection massive de gaz est une des méthodes proposées dans ce but. Son étude expérimentale et numérique est l'objet de la thèse. Des expériences menées sur les tokamaks Tore Supra et JET ont montré que l'injection de gaz légers comme l'hélium empêchaient la production d'électrons découplés, au contraire des gaz plus lourds. Les gaz légers sont en effet capables d'accroître suffisamment la densité du plasma pour empêcher la création de ces électrons. En revanche, les gaz lourds permettent de dissiper par rayonnement et de façon plus bénigne une partie de l'énergie thermique du plasma. Tous les gaz diminuent les forces électromagnétiques. Des mélanges de gaz ont également été testés avec succès pour profiter des avantages des deux types de gaz. La pénétration du gaz dans le plasma semble liée à des instabilités MHD augmentant le transport radial du gaz ionisé vers le centre, mais empêchant la propagation des neutres au-delà d'une surface critique. Des simulations d'injections massives ont été réalisées avec le code 3D MHD Jorek, en y ajoutant un modèle de fluide neutre. Les résultats montrent que la croissance des instabilités MHD est plus rapide lorsque de grandes quantités de gaz sont injectées et que les surfaces rationnelles sont successivement ergodisées lors de la pénétration du front de densité dans le plasma, conformément aux observations expérimentales.
459

Synthèse et contrôle de la taille de nanocristaux de silicium par plasma froid. Application dans les domaines de l'optoélectronique et de la nanoélectronique.

Nguyen, Tran-Thuat 30 May 2008 (has links) (PDF)
Dans cette thèse nous avons montré que l'on peut on peut synthétiser des nanocristaux de silicium en utilisant des plasmas pulsés de silane dilué dans l'hydrogène. Dans nos conditions de dépôt, en changeant le temps de croissance entre 100 msec et 1 seconde, nous avons pu contrôler la taille des nanocristaux (de 4 nm à 12 nm). A partir de la mesure de la taille des nanocristaux sur les images MET, nous avons pu calculer la vitesse de croissance radiale. Cette vitesse est proportionnelle à la pression partielle de silane dans le mélange gazeux. Nous avons également montré le rôle important de l'hydrogène atomique pour le processus de cristallisation des nanoparticules dans le plasma. La maîtrise de la synthèse des nanocristaux de silicium ouvre la voie à deux champs d'applications : (i) la fabrication de diodes électroluminescences et (ii) la réalisation de transistors à un électron. Pour la première application, une étude préalable de photoluminescence a montré un déplacement vers le bleu du pic de photoluminescence lorsque la taille des nanocristaux diminue. Cela est interprété à la fois comme un effet de confinement quantique et de passivation de la surface des nanocristaux par une coquille de SiOx. Nous avons également élaboré des diodes électroluminescence PIN basées sur les nanocristaux de silicium. Après une optimisation de la structure PIN et des conditions de dépôt de la couche intrinsèque, nous avons obtenu une électroluminescence dans la gamme infrarouge-visible à température ambiante. En vue de l'application aux transistors, nous avons fait des expériences préalables d'injection de charge dans les nanocristaux par AFM/KFM. L'observation qualitative des charges injectées a été réalisée. L'estimation quantitative de ces charges ainsi que l'étude de charges résiduelles dans des nanocristaux dopés est un domaine qui mérite d'être exploré dans l'avenir.
460

Numerical modeling of auroral processes

Vedin, Jörgen January 2007 (has links)
<p>One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.</p>

Page generated in 0.0554 seconds