Spelling suggestions: "subject:"cplasma fhysics"" "subject:"cplasma ephysics""
471 |
Drift-Type Waves in Rotating Tokamak PlasmaAsp, Elina January 2003 (has links)
The concept of energy production through the fusion of two light nuclei has been studied since the 1950’s. One of the major problems that fusion scientists have encountered is the confinement of the hot ionised gas, i.e. the plasma, in which the fusion process takes place. The most common way to contain the plasma is by using at magnetic field configuration, in which the plasma takes a doughnut-like shape. Experimental devices of this kind are referred to as tokamaks. For the fusion process to proceed at an adequate rate, the temperature of the plasma must exceed 100,000,000C. Such a high temperature forces the plasma out of thermodynamical equilibrium which plasma tries to regain by exciting a number of turbulent processes. After successfully quenching the lager scale magnetohydrodynamic turbulence that may instantly disrupt the plasma, a smaller scale turbulence revealed itself. As this smaller scale turbulence behaved contrary to the common theory at the time, it was referred to as anomalous. This kind of turbulence does not directly threaten existents of the plasma, but it allows for a leakage of heat and particles which inhibits the fusion reactions. It is thus essential to understand the origin of anomalous turbulence, the transport it generates and most importantly, how to reduce it. Today it is believed that anomalous transport is due to drift-type waves driven by temperature and density inhomogeneities and the theoretical treatment of these waves is the topic of this thesis. The first part of the thesis contains a rigorous analytical two-fluid treatment of drift waves driven solely by density inhomogeneities. Effects of the toroidal magnetic field configuration, the Landau resonance, a peaked diamagnetic frequency and a sheared rotation of the plasma have been taken into account. These effects either stabilise or destabilise the drift waves and to determine the net result on the drift waves requires careful analysis. To this end, dispersion relations have been obtained in various limits to determine when to expect the different effects to be dominant. The main result of this part is that with a large enough rotational shear, the drift waves will be quenched. In the second part we focus on temperature effects and thus treat reactive drift waves, specifically ion temperature gradient and trapped electron modes. In fusion plasmas the α-particles, created as a by-product of the fusion process, transfer the better part of their energy to the electrons and hence the electron temperature is expected to exceed the ion temperature. In most experiments until today, the ion temperature is greater than the electron temperature and this have been proven to improve the plasma confinement. To predict the performance of future fusion plasmas, where the fusion process is ongoing, a comprehensive study of hot-electron plasmas and external heating effects have been carried out. Especially the stiffness (heat flux vs. inverse temperature length scale) of the plasma has been examined. This work was performed by simulations done with the JETTO code utilising the Weiland model. The outcome of these simulations shows that the plasma response to strong heating is very stiff and that the plasma energy confinement time seems to vary little in the hot-electron mode.
|
472 |
The importance of waves in space plasmas : Examples from the auroral region and the magnetopauseStenberg, Gabriella January 2005 (has links)
This thesis discusses the reasons for space exploration and space science. Space plasma physics is identified as an essential building block to understand the space environment and it is argued that observation and analysis of space plasma waves is an important approach. Space plasma waves are the main actors in many important processes. So-called broadband waves are found responsible for much of the ion heating in the auroral region. We investigate the wave properties of broadband waves and show that they can be described as a mixture of electrostatic wave modes. In small regions void of cold electrons the broadband activity is found to be ion acoustic waves and these regions are also identified as acceleration regions. The identification of the wave modes includes reconstructions of the wave distribution function. The reconstruction technique allow us to determine the wave vector spectrum, which cannot be measured directly. The method is applied to other wave events and it is compared in some detail with a similar method. Space plasma wave are also sensitive tools for investigations of both the fine-structure and the dynamics of space plasmas. Studies of whistler mode waves observed in the boundary layer on the magnetospheric side of the magnetopause reveal that the plasma is organized in tube-like structures moving with the plasma drift velocity. The perpendicular dimension of these tubes is of the order of the electron inertial length. We present evidence that each tube is linked to a reconnection site and argue that the high density of tube-like structures indicates patchy reconnection.
|
473 |
Theory and Applications of Tri-Axial Electromagnetic Field MeasurementsKarlsson, Roger January 2005 (has links)
Polarisation, which was first studied in optics, is a fundamental property of all electromagnetic fields. A convenient way to describe the polarisation of two dimensional electromagnetic fields is given by the Stokes parameters. This thesis deals with different aspects of wave polarisation and electromagnetic field measurements. A generalisation of the Stokes parameters to three dimensions is presented. The theory has been used to develop methods and systems for obtaining the polarisation parameters of electromagnetic waves. The methods can be applied for a wide range of electromagnetic fields, measured both on ground and onboard satellites. The applications include, e.g., direction-finding, polarisation analysis, radar, and several examples in the field of wireless communication. Further applications are given in the analysis of satellite data, where a whistler wave is considered. Whistlers are circularly polarised electromagnetic waves propagating in the magnetosphere along the geomagnetic field. Dispersion in the magnetospheric plasma make the whistler frequencies travel at different speeds and the signal takes the form of a chirp. From instantaneous polarisation analysis of the whistler´s magnetic wave field, the normal to the polarisation plane is obtained and found to precess around the geomagnetic field. A statistic analysis of ionospheric stimulated electromagnetic emissions (SEE) is also presented. SEE is generated by injecting a powerful high frequency radio wave into the ionosphere. It is shown that the SEE features have a statistical behaviour indistinguishable from the amplitude and phase distributions of narrow-band Gaussian noise. The results suggests that SEE cannot be explained by simple coherent processes alone. Finally, an expression for the complex Poynting theorem is derived for the general case of anharmonic fields. It is found that the complex Poynting theorem, for real fields and sources, is not a conservation law of the imaginary part of electromagnetic energy.
|
474 |
Space Plasma Dynamics : Instabilities, Coherent Vortices and Covariant ParametrizationSundkvist, David January 2005 (has links)
The magnetospheric cusps are two funnel-like regions of Earth's magnetosphere where solar wind plasma can have direct access to the ionosphere. The cusps are very dynamic regions where wave-particle interactions continuously take place and redistribute energy among different particle populations. In this thesis, both low and high frequency plasma waves in the cusp have been studied in detail using data from the Cluster spacecraft mission. The waves were studied with respect to frequency, Poynting flux and polarization. Wavelengths have also been estimated using multi-spacecraft techniques. At low frequencies, kinetic Alfvén waves and nonpotential ion cyclotron waves are identified and at high frequencies, electron cyclotron waves, whistler waves, upper-hybrid and RX-waves are observed. A common generation mechanism called the shell-instability is proposed for several of the wave modes present in the cusp, both at low and high frequencies. The plasma in the cusp is shown to be strongly inhomogeneous. In an inhomogeneous low-frequency magnetoplasma, kinetic Alfvén waves couple to drift-waves. Such drift-kinetic Alfvén waves have long been believed to nonlinearly self-interact and form coherent structures in the form of drift-kinetic Alfvén vortices. In this thesis the first unambiguous direct measurements confirming the existence of such vortices in a turbulent space plasma are presented. Some of the crucial parameters such as the vortex radius are determined. Plasma theory is electrodynamics applied to a large collection of charged particles. In this thesis a new way of looking at the fundamental Maxwell tensor is presented. A covariant spectral density tensor containing information on electromagnetic waves is formed. This tensor is then decomposed into irreducible components by using the spinor formalism for an arbitrary metric. The obtained fundamental tensors are shown to correspond both to well known tensors in Maxwell's theory, as well as several physically interesting new tensors.
|
475 |
Low-Energy Ion Escape from the Terrestrial Polar RegionsEngwall, Erik January 2009 (has links)
The contemporary terrestrial atmosphere loses matter at a rate of around 100,000 tons per year. A major fraction of the net mass loss is constituted by ions, mainly H+ and O+, which escape from the Earth’s ionosphere in the polar regions. Previously, the outflow has only been measured at low altitudes, but to understand what fraction actually escapes and does not return, the measurements should be conducted far from the Earth. However, at large geocentric distances the outflowing ions are difficult to detect with conventional ion instruments on spacecraft, since the spacecraft electrostatic potential normally exceeds the equivalent energy of the ions. This also means that little is known about the ion outflow properties and distribution in space far from the Earth. In this thesis, we present a new method to measure the outflowing low-energy ions in those regions where they previously have been invisible. The method is based on the detection by electric field instruments of the large wake created behind a spacecraft in a flowing, low-energy plasma. Since ions with low energy will create a larger wake, the method is more sensitive to light ions, and our measured outflow is essentially the proton outflow. Applying this new method on data from the Cluster spacecraft, we have been able to make an extensive statistical study of ion outflows from 5 to 19 Earth radii in the magnetotail lobes. We show that cold proton outflows dominate in these large regions of the magnetosphere in both flux and density. Our outflow values of low-energy protons are close to those measured at low altitudes, which confirms that the ionospheric outflows continue far back in the tail and contribute significantly to the magnetospheric content. We also conclude that most of the ions are escaping and not returning, which improves previous estimates of the global outflow. The total loss of protons due to high-latitude escape is found to be on the order of 1026 protons/s.
|
476 |
Ion Beam Analysis of First Wall Materials Exposed to Plasma in Fusion DevicesPetersson, Per January 2010 (has links)
One major step needed for fusion to become a reliable energy source is the development of materials for the extreme conditions (high temperature, radioactivity and erosion) caused by hot plasmas. The main goal of the present study is to use and optimise ion beam methods (lateral resolution and sensitivity) to characterise the distribution of hydrogen isotopes that act as fuel. Materials from the test reactors JET (Joint European Torus), TEXTOR (Tokamak Experiment for Technology Oriented Research) and Tore Supra have been investigated. Deuterium, beryllium and carbon were measured by elastic recoil detection analysis (ERDA) and nuclear reaction analysis (NRA). To ensure high 3D spatial resolution a nuclear microbeam (spot size <10 µm) was used with 3He and 28Si beams. The release of hydrogen caused by the primary ion beam was monitored and accounted for. Large variations in surface (top 10 µm) deuterium concentrations in carbon fibre composites (CFC) from Tore Supra and TEXTOR was found, pointing out the importance of small pits and local fibre structure in understanding fuel retention. At deeper depths into the CFC limiter tiles from Tore Supra, deuterium rich bands were observed confirming the correlation between the internal material structure and fuel storage in the bulk. Sample cross sections from thick deposits on the JET divertor showed elemental distributions that were dominantly laminar although more complex structures also were observed. Depth profiles of this kind elucidate the plasma-wall interaction and material erosion/deposition processes in the reactor vessel. The information gained in this thesis will improve the knowledge of first wall material for the next generation fusion reactors, concerning the fuel retention and the lifetime of the plasma facing materials which is important for safety as well as economical reasons.
|
477 |
Mécanismes de rayonnement des pulsarsLarroche, Olivier 21 October 1987 (has links) (PDF)
On étudie, du point de vue théorique ainsi que par des simulations numériques, l'instabilité vis-à-vis du rayonnement de courbure d'un faisceau de particules chargées guidées par un très fort champ magnétique courbé, qui est intéressante en tant que mécanisme de rayonnement radio des pulsars. Les conditions de croissance sont un gradient de densité assez raide sur la frontière extérieure du faisceau et des fréquences élevées, satisfaisant une condition non-WKB.
|
478 |
DYNAMIQUE DES STRUCTURES COHERENTES MAGNETIQUES A L'ECHELLE IONIQUE ET COUPLAGE AVEC LES ONDES DE SIFFLEMENT PENDANT LES SOUS-ORAGES.Tenerani, Anna 26 October 2012 (has links) (PDF)
Dans cette thèse, on propose un nouveau modèle de couplage auto-cohérent entre des structures magnétiques cohérentes sur les échelles ioniques et des ondes dites de sifflement (whistlers, en anglais) à plus hautes fréquences, afin d'interpréter les données expérimentales recueillies par les satellites Cluster pendant un sous-orage magnétique dans la région nocturne de la magnétosphère terrestre. Le couplage fournit un mécanisme pour confiner et transporter les ondes whistlers par l'intermédiaire d' une onde nonlinéaire qui se propage obliquement par rapport au champ magnétique. Cette étude s'appuie sur une analyse des données expérimentales, sur une modélisation théorique ainsi que sur des simulations numériques. Pendant les sous-orages magnétiques, la magnétosphère est soumise à de fortes perturbations magnétiques et électriques dans une vaste gamme de fréquences, qui vont des basses fréquences, inférieures ou de l'ordre de l'échelle temporelle typique ionique, aux hautes fréquences, supérieures ou de l'ordre de l' échelle temporelle typique électronique. Afin de connaître les processus physiques qui déterminent la dynamique de la magnétosphère pendant les sous-orages, il est fondamental de comprendre si, et avec quel méchanisme, des couplages peuvent se produire entre des ondes qui se propagent sur des temps caractéristiques différents. Des structures magnétiques à basse fréquence ont déjá été obsérvées dans des régions comme la magnétogaine et le vent solaire, éventuellement associées à des ondes whistlers à plus haute fréquence. Dans cette thèse, on montre que des structures similaires sont obsérvées dans la couche de plasma à l'intérieur de la magnétosphère. On s'intérroge ensuite sur la façon dont l'inhomogénéité de telles structures peut influencer la propagation des ondes à plus haute fréquence. Grâce à ses quatre satellites en configuration tetraédrique et à ses mésures à haute résolution temporelle, la mission Cluster nous offre une occasion unique de pouvoir analyser la structure spatiale des perturbations stationnaires (ou se propageant) et d'étudier la dynamique du plasma sur des échelles temporelles plus courtes, telles que celles des ondes whistlers. Ainsi, je décrirai les émissions d'ondes whistlers détectées par les satellites Cluster à l'intérieur de structures magnétiques cohérentes situées dans un écoulement de plasma rapide pendant le sous-orage du 17 Août 2003. Au cours de cette période, les satellites Cluster sont situés dans la couche de plasma, séparés d'une distance de l'ordre des échelles spatiales typiques ioniques (le rayon de giration ou la longueur d'inertie des ions). Les ondes whistlers sont corrélées avec des structures magnétiques characterisées par un minimum du module du champ magnétique et un maximum de densité du plasma. Ces dernières ont été modélisées comme des ondes planes nonlinéaires de type lent qui piègent et transportent les ondes whistlers. A partir d'une étude théorique et numérique en utilisant une approche bi-fluide, on peut alors reproduire les données observationnelles. Le rôle possible de telles structures couplées dans la physique des sous-orages est aussi discuté. Ce nouveau mécanisme de piégeage, étudié ici en utilisant comme guide pour les whistlers une onde oblique de type magnétosonique, est d'intérêt plus général par rapport au contexte spécifique des observations présentées dans cette thèse. En effet, d'autres ondes nonlinéaires, comme par exemple les ondes d' Alfvén obliques ou d' Alfvén cinétiques dans les plasmas à beta fort (où beta est le rapport de la pression thermique du plasma sur la pression magnétique), pourraient aussi transporter les whistlers. Ce modèle de piégeage constitue aussi une explication alternative aux modèles existants qui considèrent une inhomogénéité stationnaire sous la forme d'un canal de densité. Enfin, l'étude décrite dans cette thèse concerne des problématiques fondamentales en physique des plasmas, comme la propagation d'ondes dans les milieux inhomogènes et l'interaction entre modes sur des échelles temporelles différentes.
|
479 |
Neural Networks Applications and Electronics Development for Nuclear Fusion Neutron DiagnosticsRonchi, Emanuele January 2009 (has links)
This thesis describes the development of electronic modules for fusion neutron spectroscopy as well as several implementations of artificial neural networks (NN) for neutron diagnostics for the Joint European Torus (JET) experimental reactor in England. The electronics projects include the development of two fast light pulser modules based on Light Emitting Diodes (LEDs) for the calibration and stability monitoring of two neutron spectrometers (MPRu and TOFOR) at JET. The particular electronic implementation of the pulsers allowed for operation of the LEDs in the nanosecond time scale, which is typically not well accessible with simpler circuits. Another electronic project consisted of the the development and implementation at JET of 32 high frequency analog signal amplifiers for MPRu. The circuit board layout adopted and the choice of components permitted to achieve bandwidth above 0.5 GHz and low distortion for a wide range of input signals. The successful and continued use of all electronic modules since 2005 until the present day is an indication of their good performance and reliability. The NN applications include pulse shape discrimination (PSD), deconvolution of experimental data and tomographic reconstruction of neutron emissivity profiles for JET. The first study showed that NN can perform neutron/gamma PSD in liquid scintillators significantly better than other conventional techniques, especially for low deposited energy in the detector. The second study demonstrated that NN can be used for statistically efficient deconvolution of neutron energy spectra, with and without parametric neutron spectroscopic models, especially in the region of low counts in the data. The work on tomography provided a simple but effective parametric model for describing neutron emissivity at JET. This was then successfully implemented with NN for fast and automatic tomographic reconstruction of the JET camera data. The fast execution time of NN, i.e. usually in the microsecond time scale, makes the NN applications presented here suitable for real-time data analysis and typically orders of magnitudes faster than other commonly used codes. The results and numerical methods described in this thesis can be applied to other diagnostic instruments and are of relevance for future fusion reactors such as ITER, currently under construction in Cadarache, France.
|
480 |
Collective effects in ultracold neutral plasmasJanuary 2012 (has links)
This thesis describes the measurements of collective effects in strongly coupled ultra-cold neutral plasmas (UNPs). It shows the implementation of experimental techniques that perturb either the density or velocity distribution of the plasma and it describes the subsequent excitation, observation and analysis of the aforementioned collective phenomena. UNPs are interesting in that they display physics of strongly coupled systems. For most plasma systems, collective effects are well described with classical hydrodynamic or kinetic descriptions. However, for strongly coupled systems, the Coulomb interaction energy between nearest neighbors exceeds the kinetic energy, and these descriptions must be modified as the plasma crosses over from a gas-like to liquid-like behavior. Strongly coupling can be found in exotic plasma systems found astrophysics, dusty plasmas, non-neutral trapped ion plasmas, intense-laser/matter interactions and inertial confinement fusion experiments. Compared to other strongly coupled plasmas, UNPs are ideal for studying collective effects in this regime since they have lower timescales, precisely controllable initial conditions and non-invasive diagnostics. Previous studies of UNPs concentrated on plasma expansion dynamics and some collective effects such as disorder induced heating, but little work had been done in relaxation or collision rates and collective modes in UNPs. This thesis presents a method for measuring collision rates by perturbing the velocity distribution of the plasma, observing plasma relaxation and measuring the relaxation rate. It also presents a new technique for observing collective modes in the plasma by perturbing the initial density of the plasma and how this results in the excitation of ion acoustic waves and a measurement of its dispersion relation. Finally, this thesis presents how this last technique can be used to create a gap in the center of the plasma and how this leads to hole propagation and plasma streaming and presents a characterization of both phenomena. The result of these experiments will be valuable for predicting the behavior of collective effects in other strongly coupled plasmas and for comparison with theories that describe them.
|
Page generated in 0.0642 seconds