1 |
Mejora de un código hidrodinámico con transporte de radiación en malla adpatativa refinada (AMR) y su aplicación a los láseres de rayos X inyectados. Amélioration d'un code hydrodynamique avec transport de rayonnement et maillage avec raffinement adaptatif (AMR) et son application aux laser XOliva, Eduardo 01 July 2010 (has links) (PDF)
L'injection d'harmoniques dans des amplificateurs gazeux génère des faisceaux de rayonnement X de grand qualité. Puisque les amplificateurs basés sur cible solide sont plus denses que ceux générés sur cible gazeuse, des impulsions d'énergie supérieure et plus courtes sont attendue. Cependant, les expériences réalisées n'ont pas présenté d'énergies supérieures à 90 nJ et des durées inférieures à 1 ps. Dans cette thèse nous nous sommes concentrés sur le problème de la différence entre l'énergie extraite et celle prédite, avec pour objectif d'obtenir des faisceaux de quelques dizaines de microjoules par impulsion. Nous avons employé le code ARWEN, déjà utilisé dans ce domaine, et l'avons amélioré dans le cadre de cette thèse. Les travaux réalisés sont donc : - L'étude théorique des sources de rayonnement X cohérent, en insistant sur les sources basées sur plasmas. L'état de l'art et la physique de ces amplificateurs sont décrits en profondeur. - La description du code ARWEN et des améliorations introduites dans le cadre de cette thèse. Ainsi que les programmes utilisés pour le postprocess des donnés. - L'optimisation des amplificateurs au moyen de simulations numériques. Ces simulations continuent les travaux précédentes et expliquent les effets donnant lieu aux différences entre l'énergie obtenue expérimentalement et celle prédite théoriquement. En prenant en compte ces effets, nous proposons un amplificateur optimisé. Nous avons aussi étudié l'amplification du faisceau harmonique en concluant au besoin d'un pré-amplificateur. En résumé, nous avons amélioré le code ARWEN en ajoutant de nouvelles capacités de simulation et l'avons utilisé pour étudier la physique des amplificateurs de rayonnement X cohérent basés sur plasmas. L'évolution de ces plasmas a été comprise et nous a permis d'expliquer les différences entre les expériences et la théorie et proposer un moyen de réduire les pertes d'énergie.
|
2 |
Spectroscopie d'absorption ultra-rapide de rayonnement X pour l'étude de la matière en régime transitoire.Lecherbourg, Ludovic 17 December 2007 (has links) (PDF)
Dans ce mémoire, j'étudie la physique des milieux denses, plasmas ou solides, en utilisant la spectroscopie d'absorption de rayonnement X. Au moyen de sources produites par interaction laser-matière, nous avons mesuré les spectres d'absorption de plasmas d'aluminium et brome, ainsi que ceux du dioxyde de vanadium (VO2). Les mesures des co-efficients d'absorption permettent de sonder la matière dense et d'étudier ses propriétés. Les expériences sont réalisées suivant le même principe : elles utilisent un schéma expérimental identique, appelé pompe-sonde. Lorsque que la matière est dense, l'absorption d'un atome est modifiée par le milieu environnant. Dans un plasma, ce sont principalement les transitions lié-lié qui sont influencées : les profils des raies spectrales sont modifiés. Dans un solide, les positions des atomes voisins de l'atome absorbeur modifient la structure des seuils d'absorption (transition lié-libre). L'étude de cette structure permet de mesurer les paramètres du matériau, et donne des informations comme l'état des bandes électroniques ou encore les distances interatomiques. Les expériences réalisées au LULI ont permis de sonder des plasmas dans le régime mal connu de la Warm Dense Matter. Un des paramètres clés, est que le plasma est caractérisé de manière indépendante (diagnostic FDI). Cela permet une meilleure comparaison de l'absorption mesurée avec un calcul réalisé avec le modèle numérique OPA-S. Les expériences réalisées à l'INRS ont mené à la réalisation d'un système expérimental ayant les caractéristiques permettant l'étude de la dynamique de solides présentant des transitions de phase ultra- rapide. Pour cela, nous avons utilisé le dioxyde de vanadium comme système modèle permettant de tester la faisabilité de la méthode.
|
3 |
Etude du rayonnement XUV produit lors de l'interaction relativiste entre un laser femtoseconde intense et un plasma d'héliumTA PHUOC, KIM 18 October 2002 (has links) (PDF)
La diffusion Thomson linéaire – qui correspond à la diffusion d'une onde - électromagnétique de faible intensité par des électrons – est un processus radiatif qui émet du rayonnement à la même fréquence que celle du rayonnement incident. Cependant, lorsque l'intensité de l'onde électromagnétique incidente devient très importante (intensité laser supérieure à 1018 W/cm2), les électrons oscillant dans l'impulsion laser atteignent des vitesses relativistes et ont un mouvement fortement non linéaire. L'onde électromagnétique qu'ils diffusent est alors constituée d'harmoniques pouvant atteindre le domaine spectral des rayons X et la distribution spatiale du rayonnement est anisotrope. La diffusion Thomson est alors dite nonlinéaire et a été proposée à plusieurs reprises comme une source de rayonnement X femtoseconde. Ce n'est qu'aujourd'hui, grâce au développement des lasers intenses, que ce processus radiatif peut être étudié dans le domaine spectral X. Le travail présenté dans cette thèse est consacré à la démonstration expérimentale et à l'étude numérique du rayonnement de diffusion Thomson nonlinéaire X-UV produit lors de l'interaction Laser-Plasma.
|
4 |
Accélération d'électrons et rayonnement betatron générés par sillage laser dans des tubes capillairesJu, Jinchuan 27 June 2013 (has links) (PDF)
Cette thèse porte sur le rayonnement X bêtatron généré par des électrons accélérés par sillage laser plasma dans des tubes capillaires diélectriques. En l'état actuel de la technologie des impulsions laser multi-térawatts, on peut produire des faisceaux ayant une intensité crête élevée, de l'ordre de 1018 W/cm2 dans le plan focal. Une telle impulsion laser se propageant au sein d'un gaz sous-dense conduit à des phénomènes d'interaction laser-plasma non-linéaires, tels que la création d'une bulle de plasma, i.e. une bulle ne contenant aucun électron, suivant le laser. La séparation spatiale des charges en résultant crée des champs électriques très élevés au sein de la bulle, de l'ordre de 100 GV/m, ce qui offre la possibilité d'accélérer des électrons jusqu'au GeV après seulement quelques centimètres d'interaction. En outre, un rayonnement synchrotron ultra-bref, appelé rayonnement bêtatron, est produit lors de l'accélération des électrons puisque ces derniers, soumis au champ électrique radial de la bulle plasma, ont une trajectoire oscillante. Cette thèse présente des résultats expérimentaux sur la génération et l'optimisation de faisceaux d'électrons et de leur rayonnement X, en particulier lorsque le tube capillaire est utilisé pour recueillir l'énergie du halo laser dans le plan focal facilitant l'autofocalisation du laser sur de longues distances. Des faisceaux d'électrons de quelques dizaines de picocoulomb, avec une énergie maximale allant jusqu'à 300 MeV, et dont le spectre est soit piqué à haute énergie soit exponentiellement décroissant, ont été produits dans des tubes capillaires de 10 mm de long avec l'installation laser du Lund Laser Center (LLC, en Suède) par une impulsion laser de 40 fs d'un 16 TW Ti: Saphir. Un rayonnement bêtatron a également été mesuré, il se compose de de photons X dont l'énergie est comprise entre 1 et 10 keV et atteint une luminosité maximale d'environ 1021 photons/s/mm²/mrad²/0.1%BW. Cela équivaut à environ 30 fois l'intensité des faisceaux générés dans le cas des jets de gaz de longueur 2 mm ne disposant pas de guidage optique externe. La compensation des fluctuations de pointé laser permet de minimiser les fluctuations des propriétés du faisceau d'électrons. On obtient des faisceaux d'électrons dont les fluctuations tir-a-tir sont de 1 mrad en pointé, de quelques pourcents en énergie et d'environ 20% RMS en charge. La fluctuation en charge du faisceau, qui peut être considérée comme relativement grande, s'avère être principalement corrélée à la fluctuation en puissance du laser. De plus, il a été montré que le rayonnement bêtatron pouvait être utilisé pour caractériser le processus d'accélération des électrons en caractérisant le nombre moyen d'oscillations bêtatron effectuées par les électrons à l'intérieur de la bulle plasma. La taille typique des sources de rayonnement X (dimension pour laquelle l'intensité gaussienne est égale à 1/e² de la valeur crête) est estimée à ~ 2.5 µm en utilisant un modèle de diffraction de Fresnel induite par une lame de rasoir. Cela correspond à une émittance RMS normalisée pour le faisceau d'électrons d'environ 0,83π mm.mrad. Des simulations tridimensionnelles particle-in-cell (PIC) ont été effectuées et confirment les résultats expérimentaux. Elles indiquent également que les paquets d'électrons générés ainsi que les flashs X directionnels sont ultra-brefs : ~ 10 fs.
|
5 |
Des accélérateurs laser-plasma aux sources de rayonnement X femtoseconde : étude, développement et applicationsCorde, Sébastien 12 March 2012 (has links) (PDF)
Lors de l'interaction relativiste entre une impulsion laser brève et intense et un plasma sous-dense, des électrons peuvent être injectés et accélérés jusqu'à plusieurs centaines de MeV dans une structure accélératrice se formant dans le sillage de l'impulsion laser : c'est l'accélérateur laser-plasma. Une des applications majeures de ces accélérateurs réside dans le développement de sources compactes de faisceaux de rayonnement X femtoseconde. Au cours de cette thèse, deux sources de rayonnement X ont été étudiées et développées. Le rayonnement bétatron, intrinsèque à l'accélérateur laser-plasma, provient des oscillations transverses des électrons au cours de leur accélération. Sa caractérisation par comptage de photons a montré que le faisceau X contenait un total de 10^9 photons, avec des énergies pouvant être supérieures à 10 keV. Nous avons également développé une source Compton tout optique produisant des photons de quelques centaines de keV, basée sur la collision entre un faisceau de photons et un faisceau d'électrons. Le potentiel de ces sources de rayonnement a été mis en évidence en réalisant l'imagerie par contraste de phase mono-coup d'un échantillon biologique. Nous avons ensuite montré que l'émission X bétatron est un outil expérimental très puissant pour étudier la physique sous-jacente à l'accélération laser-plasma. On peut tout d'abord réaliser la cartographie de la région d'émission, ce qui donne des informations inédites, permettant par exemple de localiser l'endroit où sont injectés les électrons. Les propriétés angulaires et spectrales du rayonnement X permettent également d'avoir des informations sur la dynamique transverse des électrons au cours de leur accélération.
|
6 |
Caractérisation spectrale et temporelle de l'émission X issue de l'interaction laser - agrégatsBonté, Christophe 28 April 2006 (has links) (PDF)
Les agrégats de gaz rare constituent un état de la matière intermédiaire entre les cibles solides et les atomes en phase gazeuse. Il a été démontré que les agrégats irradiés sont sources d'ions, d'électrons, de neutrons énergétiques ainsi que de rayonnement allant du visible aux X durs. Cette source peut-être produite avec un taux de répétition élevé et a l'avantage de ne pas produire de débris, et de présenter une très forte conversion de l'énergie laser incidente. Nous nous intéressons au rayonnement X particulièrement, en le caractérisant en intensité, spectre et durée, comme préalable à toute application. En collaboration avec l'INRS-Energie (Varenne, Canada), nous avons mis en œuvre une caméra à balayage de fente dont la résolution temporelle est de 800 fs rms. En focalisant des impulsions laser courtes (30 fs - 5 ps) et intenses (jusqu'à 1e17 W/cm2) sur des agrégats d'argon (15 - 30 nm), nous avons démontré que l'émission X dont l'énergie est supérieure à 2 keV est plus courte que la résolution temporelle. En couplant la caméra à un cristal tronconique, nous nous sommes intéressés au rayonnement de couche K dans la gamme 2,9 - 3,2 keV. Nous avons démontré que ce rayonnement a une durée inférieure à la résolution temporelle, et que les raies étaient émises avec un écart temporel relatif inférieur à 1 ps. Une simulation basée sur un modèle nano-plasma et sur un code collisionnel-radiatif a été développée au CELIA. Les spectres X résolus en temps calculés reproduisent à la fois la brièveté d'émission du rayonnement X et les états de charge élevés observés.
|
7 |
Monitoring des binaires X et des novae avec le Burst Alert Telescope à board du satellite SwiftSenziani, Fabio 01 February 2008 (has links) (PDF)
Le Burst Alert Telescope (BAT) à bord du satellite Swift est un instrument très performant pour l'astronomie des rayons X-durs/gamma. L'énorme champ de vue, la bonne sensibilité et la stratégie de pointage couvrant tout le ciel font de BAT un instrument adapté pour observer des sources connues et pour étudier les nouveaux objets variables. Dans cette thèse une description détaillée des nouvelles procédures pour analyser les données de survey de BAT est fournie et les premiers résultats astrophysiques de sources galactiques en accrétion sont discutés. Trois binaires X ont été étudiées : le microquasar GRO J1655-40, le SFXT IGR J08408-4503 et le LMXB symbiotique 4U 1954+319. L'émission gamma due `a la décroissance des éléments radioactifs des novae a été aussi recherchée. L'émission de RS Oph, probablement liée au chauffage par choc, a été détectée. La probabilité de détecter une nova durant le temps de vie de Swift a été estimée en utilisant une approche Monte Carlo.
|
8 |
L'accrétion et l'émission à proximité des trous noirs supermassifs dans les quasars et les NAG: Modélisation du spectre UV-XGoosmann, René 02 February 2006 (has links) (PDF)
La dernière génération de satellites X, comme XMM-Newton ou Chandra, a beaucoup enrichi notre savoir sur les propriétés du rayonnement X des Noyaux Actifs de Galaxies (NAG). La spectroscopie détaillée et les observations longues de plusieurs centaines de milliers de secondes ont ouvert de nouvelles perspectives sur les mécanismes de la production du rayonnement X, de sa modification par la matière située sur son chemin, et sur sa variabilité.<br /><br />Dans ma thèse, je présente des modèles de transfert de rayonnement thermique pour les NAG dans les domaines spectraux de l'extrême UV et des X. Les modèles prennent en considération plusieurs aspects des propriétés X observées: la composante du 'reprocessing', la variabilité et les flares X, ainsi que les effets du 'warm absorber'. Concernant le reprocessing, je modélise en détail des flares X en supposant des reconnexions magnétiques au-dessus du disque d'accrétion. Ces événements sont supposés être similaires aux flares solaires. Ils produisent des sources lumineuses et compactes émettant du rayonnement X dur et créant des taches chaudes sur le disque sous-jacent. J'évalue les propriétés physiques du milieu du disque à travers la tache et je calcule des spectres pour le rayonnement ré-émis en fonction de la position dans la tache et de la ligne de visée locale. Je fais varier la masse du trou noir, son taux d'accrétion, et son paramètre de rotation en évaluant des taches à plusieurs distances du trou noir et pour des phases orbitales différentes. Je calcule aussi des spectres vus par un observateur lointain en appliquant un traitement complet de relativité qui est basé sur une technique du tracés de rayons. Je fournis des simulations de l'évolution spectrale à laquelle on s'attend pour des flares particuliers, en tenant compte des délais causés par la distance entre la source compacte et différents endroits de la tache chaude. Les modèles du flare sont effectués en supposant un disque d'accrétion sous-jacent qui est à l'équilibre hydrostatique. La durée du flare est supposée être par un facteur significatif moins longue que l'échelle de temps dynamique du disque, afin que sa structure verticale reste constante pendant toute la période du flare.<br /><br />Des observations récentes de la galaxie Seyfert-1 MCG -6-30-15 avec XMM-Newton ont montré une courbe du lumière qui contient un flare lumineux et symétrique pendant environ 2000 secondes. Pour ce flare, Ponti et al. (2004) présentent une analyse temporelle à l'aide des fonctions d'auto-corrélation en dérivant des délais entre des bandes d'énergie différentes. Je suggère un modèle simple qui décrit ces délais en supposant que l'observateur détecte le rayonnement primaire et le reprocessing comme pulses consécutifs. Ce modèle reproduit les délais observés dans MCG -6-30-15 d'une manière qualitativement correcte, et il permet une estimation de la distance entre la source compacte du flare et la surface du disque.<br /><br />En utilisant les résultats de la modélisation d'un flare particulier, on effectue des simulations Monte-Carlo pour des distributions de flares répartis sur le disque. Le spectre de variabilité rms calculé est construit sur la base des ces simulations pour différentes distributions radiales de la luminosité du disque et pour différents paramètres de rotation du trou noir. En appliquant notre modèle au spectre rms observé, nous apportons à ces paramètres des contraintes pour le cas de MCG -6-30-15.<br /><br />Enfin, nous étudions la modification du rayonnement X dans des régions plus lointaines de l'objet central grâce à une modélisation du warm absorber. Une grille de modèles est calculée pour un warm absorber en équilibre de pression totale, comme l'a suggéré récemment l'observation de la galaxie Seyfert-1 NGC 3783. Nous montrons les tendances générales de la stratification du milieu et du spectre absorbé qui en résulte en faisant varier la pente du spectre incident, le paramètre d'ionisation, et la densité de colonne du warm absorber.<br />_______________<br />Référence: Ponti, G., Cappi, M., Dadina, M., & Malaguti, G. 2004, A&A, 417, 451
|
9 |
Sources de rayonnement X ultrabref générées par interaction laser-matière et leurs applicationsROUSSE, Antoine 26 April 2004 (has links) (PDF)
Le rayonnement X est un outil vieux de plus d'un siècle qui a magnifiquement participé au développement de nombreuses thématiques. Il se produit actuellement une petite « révolution » scientifique qui va avoir un impact fort sur la vision dont la matière peut être analysée. Le travail présenté dans le cadre de cette HDR insiste sur le développement de sources X innovantes obtenues par interaction entre un laser femtoseconde intense avec la matière, et sur leurs rôles dans la réalisation d'applications pionnières dans cette thématique de la « science X ultrarapide ».
|
10 |
Etude de l'émission haute énergie des objets compacts avec SPI/INTEGRALDroulans, Robert 28 November 2011 (has links) (PDF)
L'étude de l'émission haute énergie est indispensable pour comprendre les processus radiatifs inhérents aux flots d'accrétion sur les objets compacts (trous noirs et étoiles à neutrons). Le continuum X/γ d'un tel système est généralement interprété selon deux composantes. La première traduit la présence d'un disque d'accrétion alors que la deuxième, à plus haute énergie (>20 keV), peut s'expliquer par des diffusions Compton inverses entre électrons chauds et photons de plus basse énergie. Les mécanismes de chauffage des électrons et la structure du milieu de Comptonisation restent cependant mal connus. Pour approfondir notre compréhension des processus physiques qui gouvernent ce milieu, nous disposons d'une quantité importante de données issues de l'instrument SPI, un spectromètre haute énergie (20 keV - 8 MeV) développé au CESR (désormais IRAP, Toulouse, France) pour la mission INTEGRAL de l'ESA. Au-dessus de 150 keV, SPI réunit une résolution spectrale et une sensibilité sans précédent et constitue donc un outil idéal pour l'étude de l'émission haute énergie des objets compacts. Le manuscrit présente les résultats d'une étude spectrale et temporelle de trois systèmes particuliers. Le premier est l'énigmatique microquasar GRS 1915+105, caractérisé par une forte variabilité en rayons X et une luminosité colossale. Sur une échelle de temps de l'ordre du jour, l'indice de photon dans la bande 20 - 200 keV varie entre 2.7 et 3.5 ; à plus haute énergie (>150 keV), les mesures de SPI montrent la présence systématique d'une composante additionnelle qui s'étend sans coupure jusqu'à ~500 keV. Le deuxième système abordé est GX 339-4, une source dont le comportement spectral est représentatif des systèmes à trou noir. Les mesures de SPI ont révélé que le spectre de son état dur lumineux présente une composante énergétique (>150 keV) qui varie sur une échelle de temps de quelques heures. Pour expliquer ce phénomène, je propose une interprétation alternative de l'état dur grâce à un nouveau modèle qui inclut les effets du champ magnétique de manière auto-cohérente. Enfin, cette thèse comprend l'étude de la source GS 1826-24, un système à étoile à neutrons. Le flot d'accrétion étant extraordinairement stable, plus de 8 Msec de données ont pu être intégrées ce qui a permis de détecter la source jusqu'à plus de 500 keV. Une fois de plus, les mesures ont mis en évidence une composante haute énergie dans le spectre moyen ; cette caractéristique n'est donc pas exclusivement associée aux systèmes à trou noir. Après comparaison des résultats obtenus pour les trois sources, je discute les possibles origines physiques de l'émission haute énergie des systèmes accrétants, concluant que toutes les formes spectrales observées peuvent être expliquées par une couronne magnétique alimentée par des processus d'accélération non-thermiques.
|
Page generated in 0.1295 seconds