Spelling suggestions: "subject:"plasmodium"" "subject:"lasmodium""
71 |
High-thoughtput reverse genetic screening in Plasmodium berghei using barcode sequencingGomes, Ana Rita Batista January 2015 (has links)
No description available.
|
72 |
Detection and identification of plasmodium species causing malaria in Malawi using rapid diagnostic testsTegha, Gerald Loiswayo January 2011 (has links)
Malaria represents one of the oldest documented diseases among humans and even today organisms in the genus Plasmodium kill more people than any other infectious disease, especially in tropical and subtropical areas. The four most common species which infect humans are Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malaria. Of these four species, Plasmodium falciparum and Plasmodium vivax account for 95 percent of infections globally. Microscopy has been used since early days for the diagnosis of malaria because this method is simple, does not require highly equipped facilities, and in most cases enables differentiation among the species causing malaria in humans when performed by skilled microscopy readers. However, this method has been misleading in identifying parasite species, especially in the case of low level parasitemia, a mixed parasite infection, or modification by drug treatment as well as in placental malaria. Malaria rapid diagnostic tests (RDT) have played a major role in malaria management; particularly in providing blood based diagnosis in remote locations where microscopy based diagnosis is unavailable. These diagnostic tests are fast and easy to perform and do not require electricity or specific equipment. As part of strengthening malaria diagnostics in Malawi, the Ministry of Health and Population strongly recommends the use of malaria RDT’s at all levels of the health care delivery system. However, malaria microscopy remains a gold standard test for malaria. All patients (regardless of age) with suspected uncomplicated malaria should have a confirmed diagnosis with malaria RDT before anti-malaria treatment is administered. Based on field performance evaluations that assessed performance, quality control and production capacities of the manufacturing companies of malaria RDT’s, the Ministry of Health and Population recommended two brands of Histidine Rich Protein 2 (HRP-2), RDT’s for use in Malawi. These are SD Bioline malaria Ag Pf and the New Paracheck malaria Ag Pf. All these RDT’s are able to detect only P. falciparum. However, other species have been reported to exist in the country and there is a need to find proper RDT’s which will be able to detect all other species including P. falciparum. The main aim of this study was to evaluate Paramax-3 Pf/Pv/Pan RDT (Zephyr Biomedicals, India), if used in Malawi, could be able to detect and identify the different species of Plasmodium causing malaria in Malawi. The study recruited a total of 250 adult and infants at Bwaila Hospital in Lilongwe, Malawi. Study results showed that the overall sensitivity and specificity of the Paramax-3 RDT used in the study were 100 percent and 83 percent respectively. However, it was observed that the RDT test was not able to identify the P. ovale, and in some cases, the RDT test was positive for P. falciparum when the PCR identified the species as P. ovale. No P. vivax was detected both by RDT and PCR. This study was able to detect and identify the presence of P. malaria and P. ovale in Malawi apart from the P. falciparum. There were no significant differences between microscopy results compared to both the RDT and the PCR, with 94 percent and 98 percent sensitivities of R1 and R2 compared to RDT, as well as 94 percent and 96 percent sensitivities for R1 and R2 compared to PCR respectively. Both R1 and R2 had low specificities for example, R1 had 72 percent and R2 had 80 percent compared to RDT. Comparing R1 and R2 to PCR, the sensitivities were 64.9 percent and 67.2 percent respectively. However, the readers had difficulties differentiating the different species microscopically. The history of anti-malaria treatment had no significant effect on the outcome of the results in both the RDT and PCR.
|
73 |
Dynamic bioinformatics and isotopic evaluation of the permeome of intraerythrocytic Plasmodium falciparum parasitesNaude, Mariska January 2018 (has links)
The Plasmodium falciparum parasite is the causative agent of the most severe form of malaria. The increase in resistance against the majority of antimalarial compounds underpins the need for the development of new antimalarial compounds, targeting novel biological activities of the parasite. As the P. falciparum parasite develops through its life cycle stages, the parasite is exposed to different environments, resulting in both strategy-specific differences between the asexual (proliferation) and gametocyte (differentiation) stages, as well as stage-specific (i.e. ring – schizont stages; stage I - V gametocytes) differences within each strategy. These strategy- and stage-specific differences might be supported by the presence of different membrane transport proteins (MTPs) in the asexual and gametocyte stages. P. falciparum-encoded MTPs (permeome) are promising novel drug targets because they are specific to P. falciparum and essential for the survival of the P. falciparum parasite as these proteins mediate the uptake and removal of metabolites and waste products. However, to propose parasite-encoded MTPs as potential novel drug targets in the asexual and gametocyte stages, the presence of these MTPs in these stages should be investigated.
The P. falciparum-encoded permeome is well characterised in the asexual stages. However, limited knowledge is available about the permeome in the gametocyte stages. Therefore, to address this knowledge gap, the strategy- and stage-specific expression of the entire complement of parasite-encoded MTPs were investigated in the asexual and gametocyte stages to infer the presence of MTP transcripts in the absence of biochemical uptake data.
The transcript expression of the permeome revealed strategy-specific expression, with the entire permeome expressed during asexual stages, as expected, given the metabolic adaptations that support the high proliferation rate. By contrast, the gametocyte stages that are undergoing sexual differentiation towards transmission, as opposed to active proliferation, less than half of the permeome were expressed, indicating a reduced range of MTPs active in the gametocyte stages. Subsequently, stage-specific expression of the permeome was investigated by correlating stage-specific metabolic processes that occur within the asexual and gametocyte stages, to the expression profiles of MTP genes involved in these processes. Most of the MTPs involved in these processes showed stage-specific expression, with a few MTP genes showing no stage-specific expression within the asexual and gametocyte stages, respectively. When comparing the stage-specific expression between the asexual and gametocyte stages, it was observed that during the gametocyte stages, there was an absence of some MTPs (decreased expression) that were expressed during the asexual stages, suggesting that the gametocyte stages require only certain metabolites to maintain the investigated metabolic processes.
In conclusion, these expression profiles of the permeome in the asexual and gametocyte stages suggest the differential expression of the permeome in these stages. The data presented in this study provides the first complete evaluation of expression of the permeome across P. falciparum asexual and gametocyte stages and serves as a blueprint for future biochemical investigations of transport in these stages, thereby providing a foundation for identifying novel MTP drug targets in future drug development programmes. / Dissertation (MSc)--University of Pretoria, 2018. / NRF / Biochemistry / MSc / Unrestricted
|
74 |
IDENTIFICATION OF ANTI-ADHESION SMALL MOLECULES, WHICH INHIBIT SEQUESTRATION OF PLASMODIUM-FALCIPARUM INFECTED ERYTHROCYTES, USING A TWO-STEP APPROACHUnknown Date (has links)
A hallmark trait of P. falciparum malaria is sequestration, in which parasite infected erythrocytes (IEs) adhere to the vasculature, causing organ failure and death. Current antimalarials only kill the parasites, necessitating development of anti-adhesion drugs. Using our two-step approach, we can efficiently screen for anti-adhesion small molecules. Screenings of 75libraries using Bio-Plex 200 identified the most active TPI libraries, which were deconvoluted to single compounds. Screenings library TPI 1319 yielded 3 inhibiting non-optimized compounds, each of which inhibits binding between two receptors, CSA and ICAM1, and their binding PfEMP1 domains. Two compounds deconvoluted from TPI 2103 prevent binding between PfEMP1 and ICAM1. Cytoadhesion assays with live IEs support the results seen with Bio-Plex, with best hits showing inhibition below 200 nM. Cytotoxicity testing of active compounds showed minimaltoxicity. Identified hits appear to be amenable to Structure Activity Relationship studies to develop powerful anti-adhesion drugs to treat severe malaria. / Includes bibliography. / Thesis (MS)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection
|
75 |
Parazité způsobující ptačí malárii a jejich přenašeči / Avian malaria parasites and their vectorsSynek, Petr January 2018 (has links)
Parasites causing avian malaria belong to the group Haemosporida, which represents a monophyletic group of dixenic protists within Apicomplexa. Their asexual reproduction takes place in a vertebrate intermediate host, and the formation of gametes and sporogony occur in blood-sucking dipteran insects, which are the definitive hosts of these parasites. Three main genera (Plasmodium, Haemoproteus and Leucocytozoon) are found mostly in their avian hosts. We focused on the Haemosporida of wild birds and their transmission by insect vectors in natural populations, which had previously been a neglected area. Our results were obtained both by traditional methods (investigation of infections by microscopy of blood smears) and mainly by molecular methods (e.g. nested PCR) centered around work with unique haplotypes of the haemosporid lineages. The aim of our work was to determine the range of possible insect vectors of avian haemosporidians in the territory of the Czech Republic, taking into account the specificity of the parasites within these vectors, and to describe the diversity of haemosporidians in the populations of their bird intermediate hosts. We chose four different species of birds from four orders (Passeriformes, Strigiformes, Accipitriformes, and Galliformes). As potential vectors of avian...
|
76 |
Soluble expression of plasmodium falciparum glutamine synthetase and three-dimensional structure by single particle reconstructionPatel, Satishkumar Ishverlal January 2015 (has links)
Includes bibliographical references / [No subject] Malaria infection caused by the apicomplexa pathogen Plasmodium falciparum has a high rate of resistance to existing anti-malarial drugs. The World Health Organisation recommended interventions are unlikely to eliminate the growth of resistance and it would therefore be prudent to continue the search for new drug targets for the continued combatting of malaria. Plasmodium falciparum is parasitic on the host for its metabolites and therefore inhibiting the transportation of glutamine from the host, has long been considered a potential strategy for combating the spread of infection. The recently sequenced Plasmodium falciparum genome has however shown that pathways for independent survival are also conserved. Therefore, combating the spread of Plasmodium falciparum in the human host, in addition to inhibiting the transportation of glutamine, will also require the inhibition of the de novo expression of essential amino acids within the Plasmodium falciparum cell. This could be achieved by inhibiting the glutamine synthetase gene, which is an essential step in the tri-carboxylic acid cycle.
|
77 |
Prevalencia de mutaciones en los genes PFDHFR y PFDHPS de Plasmodium falciparum en muestras de pacientes con malaria severa y/o complicada, del banco de muestras biológicas del NAMRU-6Santolalla Robles, Meddly Leslye January 2015 (has links)
Introducción: Malaria representa una emergencia médica debido a la posible complicación y muerte del paciente cuando este no fue tratado apropiadamente. Malaria severa y/o complicada (MSC) es causada casi exclusivamente por Plasmodium falciparum. Uno de los factores de riesgo asociado con MSC es el tratamiento inadecuado de los casos de malaria no complicada (MNC). Objetivos: Se genotipificó a los genes dihidrofolato reductasa (Pfdhfr) y dihidropteroato sintasa (Pfdhps) en muestras de 60 pacientes con MSC. La resistencia al tratamiento combinado sulfadoxina-pirimetamina (SP) es causado principalmente por mutaciones puntuales en esos genes Diseño de estudio: Los pacientes con MSC de este estudio fueron enrolados durante el brote de malaria de 1998, cuando SP era la primera línea de tratamiento. Materiales y métodos: Se usó el método de secuenciamiento de Sanger para la identificación de los polimorfismos en el gen Pfdhfr y los métodos PCR-RFLP y PCR alelo-específico para el gen Pfdhps. Resultados: Se encontró que el 84% de las muestras tenían el genotipo del parásito cuádruple mutante N51I/S108N/I164L/inserción repetición Bolivia, y el 16% restante el genotipo mutante simple S108N. Con respecto al gen Pfdhps, encontramos cuatro genotipos, siendo el triple mutante A437G/K540E/A581G el más frecuente (78%). Conclusiones: Observamos que las mutaciones I164L de Pfdhfr y K540E de Pfdhps en los casos de MSC fueron más del doble de frecuente comparado con los reportes publicados en casos de MNC en la misma área y periodo de estudio. / --- Introduction: Malaria represents a medical emergency because it may rapidly progress to complication and death without prompt and appropriate treatment. Severe and/or complicated malaria (SCM) is almost exclusively caused by Plasmodium falciparum. One of the risk factors associated with SCM is an inappropriate treatment of the noncomplicated malaria (NCM). Objectives: We genotyped the dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes from 60 SCM patients. Resistance to SP in P. falciparum is caused mainly by specific mutations at those genes. Study design: SCM patients of this study were enrolled during the malaria outbreak in 1998, when sulfadoxine/pyrimethamine (SP) was the first line of treatment. Material and methods: We used a Sanger sequencing approach for the identification of polymorphisms at Pfdhfr gene codons, and in the case of Pfdhps gene we used a PCRRFLP and PCR allele-specific methodology. Results: We found that 84% of samples harbored a quadruple mutant genotype N51I/S108N/I164L/insertion Bolivia repeat, and the left 16% of the sample contained an infection with a simple mutant genotype (S108N). Regarding the Pfdhps gene, we found four genotypes, the triple mutant genotype A437G/K540E/A581G was the more frequent (78%). Conclusions: We observed that the mutations I164L and K540E, known as highly predictor to SP resistance, in this group of patients with SCM were twice of frequency of the mutations from patients with NCM from published reports, also in the same area and period of study. / Tesis
|
78 |
An investigation of plasmodium falciparum sortilin in trafficking of invasion proteins of the human malaria parasiteShunmugan, Serena January 2018 (has links)
Malaria is arguably one of the most overwhelming infectious diseases throughout the world's existence. The most virulent parasite, Plasmodium falciparum, has a redundancy of invasion proteins, allowing it to switch between different receptors on the host red blood cell. These invasion proteins are stored in the apical organelles, the rhoptries and micronemes, but very little is known about how newly synthesized proteins are transported to these organelles. The hypothesis in this study was that a common protein is involved in trafficking invasion proteins from the trans-Golgi network and PfSORTILIN was investigated as a potential escorter protein. The CCys domain of PfMAEBL, a rhoptry protein, and the prodomain of PfAMA-l, a microneme protein, have been implicated in trafficking to the apical organelles. These domains and the VPS 10 domain of PfSORTILIN were cloned into expression vectors encoding a GST- or Histag. Recombinant proteins were expressed in E. coli and purified by affinity chromatography on glutathione- or Ni-particles. In vitro binding assays were performed, which showed that PfSORTILIN VPS 10 bound to PfMAEBL ccys but not to the PfAMA-1 prodomain, suggesting that PfSORTILIN is a rhoptry protein escorter and is not involved in microneme trafficking. To identify novel binding partners of PfSORTILIN VPS 10, the protein was biopanned against a P. falciparum phage display library. No binding partners were identified, most likely because the library is not schizont-stage specific, which is when PfSORTILIN and invasion proteins are predominantly expressed. The results from this study were integrated with other studies and a trafficking model for PfMAEBL was proposed. This study enhances our knowledge of trafficking pathways and suggests that PfSORTILIN may serve as a common rhoptry protein escorter. / MT 2019
|
79 |
The Role of Rhomboid proteases and a Oocyst Capsule protein in Malaria Pathogenesis and Parasite DevelopmentSrinivasan, Prakash 11 June 2007 (has links)
No description available.
|
80 |
Characterization of the antigens of Plasmodium berghei.Grothaus, Gary David January 1981 (has links)
No description available.
|
Page generated in 0.0407 seconds