Spelling suggestions: "subject:"1plastic crystal"" "subject:"2plastic crystal""
1 |
Dynamics in orientationally disordered solidsMartínez García, Julio César 15 July 2011 (has links)
The key features of dynamics of ultraslowing glass forming systems are their universality in diversity. Its
origin is recognized as one of the greatest challenges of condensed matter physics and materials
engineering in the XXI century. Similar phenomena are observed on approaching the glass transition in
low molecular weight supercooled liquids, polymers, colloidal fluids as well as in solids, for instance in
orientationally disordered crystals, spin glass-like magnetic, vortex glasses. Pre-vitreous dynamics is also
proposed as a general reference for the category of complex liquids/soft matter systems.
The upsurge of the primary relaxation time or related dynamical properties is the basic physical
phenomena of the still mysterious previtreous behavior. This means a much more pronounced slowing
down than the Arrhenius pattern observed far above the glass transition temperature. Portraying this
behavior constitutes one of key checkpoints for theoretical models developed to unwind the glass
transition puzzle. However, none of the aforementioned features can answer the understanding that
governs the increase of relaxation time in liquids upon cooling.
In this thesis we focus on the above questions studying the dynamics of some materials for which their
molecules can retain a translational order being orientationally disordered between them upon cooling,
which are referred to plastic phases or orientationally disordered (OD) crystalline phases. The work
presented in this thesis potentially extends the knowledge of dynamics of OD phases and orientationally
glasses (OG), a research topic which has gained interest during the last decades.
Through this study, especial attention has been devoted to the phenomenological equations accounting
to the temperature dependence of the mean relaxation time describing the orientational dynamics .The
study was carried out by the use of BDS as well as two complementary experimental techniques. We
show distortion-sensitive and derivative-based empirical analysis of the validity of leading equations for
portraying the previtreous evolution of primary relaxation time. A new method for studying the dynamics of
glass forming systems is introduced and the minimization procedure is validated and discussed.
We present the results divided in two topics, the dynamics of the pure compounds and mixed crystals and
the derivative analysis through different existing models.
In the first topic we focus on the dynamics of the pure compounds and mixed crystals formed between
cycloheptanol and cyclooctanol as well as the a-relaxation dynamics of 1-cyano-adamantane and its
mixtures with 1-chloro-adamantane. The second topic is divided in two groups of models, linearized and
non-linearized models. In the linearized models we show the application of the derivative based,
distortion-sensitive analysis to liquid crystals (LC) and OD phases. We also discuss the results concerning
to the cases of the olygomeric liquid epoxy resin (EPON828), neopentylalcohol and neopentylglycol
mixture, isooctylcyanobiphenyl and propylene carbonate. The possible empirical correlations between one
of the linearized models with the universal pattern for the high frequency wing of the loss curve for primary
relaxation time for LCs and OD phases is also shown.
In the final part we show that the form of the equation recently introduced by Mauro et al. does not allow a
similar straightforward linearization procedure. Unlike the previous models, the involved parameters are
not correlated with the slope and the intercept of a linear function. In order to solve this problem, we have
introduced the concept of the enthalpy space.
The evidences of the existence of crossovers as well as quantitative descriptions are discussed. We show
also a new procedure for detecting the crossover in a very easy way. A new kind of crossovers which
seems to be impossible to be detected by the classical Stickel transformation is presented. / La principal característica de la dinámica de sistemas vítreos viscosos, es su universalidad en la
diversidad. Su origen es uno de los mayores desafíos de la física de la materia condensada y de la
ingeniería de materiales en el siglo XXI. La fenomenología típica de las fases vítreas se observan cerca de
la transición vítrea en líquidos subenfriados de bajo peso molecular, polímeros, fluidos coloidales, así
como en los sólidos con fases orientacionalmente desordenadas. La imposibilidad de explicar las causas
del gran aumento del tiempo de relajación al enfriar un líquido, constituye uno de los problemas más
importantes no resueltos en materia condensada. Con el objetivo de dar respuesta a dicha interrogante, se
han propuesto modelos termodinámicos y dinámicos que han resultado inconsistentes.
En esta tesis nos centramos en dicha problemática, estudiando la dinámica orientacional de algunos
materiales que al ser enfriados pueden conservar un orden traslacional mientras que se conserva el
desorden orientacional de las moléculas que los forman. Dichas fases se conocen como fases plásticas u
orientacionalmente desordenadas (OD).
El trabajo presentado en esta tesis amplía el conocimiento de la dinámica de dichas fases, un tema de
investigación cuyo interés ha aumentado durante las últimas décadas.
Se ha dedicado una atención especial a las ecuaciones fenomenológicas que describen la dependencia del
tiempo de relajación con la temperatura. El estudio se ha llevado a cabo mediante el uso de espectroscopía
dieléctrica de banda ancha, así como mediante el uso de técnicas experimentales complementarias. Se ha
introducido un nuevo método para el estudio de la dinámica de los sistemas que dan lugar a fases vítreas.
El método ha sido validado y discutido.
Los resultados de esta tesis se presentan divididos en dos temas, por un lado, la dinámica de compuestos
puros y de los cristales mixtos y, por otro, el análisis mediante el método derivativo aplicado a los
diferentes modelos físicos existentes. En el primer tema nos centramos en la dinámica de los compuestos
puros y los cristales mixtos formados por cicloheptanol y ciclooctanol, así como la dinámica de la
relajación alfa en 1-ciano-adamantano y sus mezclas con 1-cloro-adamantano. El segundo tema se divide
en dos grupos de modelos, los modelos lineales y no lineales. En los modelos lineales se muestra la
aplicación del procedimiento de derivativo en los cristales líquidos (CL) y las fases OD. También se
discuten los resultados relativos a los casos de la resina líquida (EPON828), la mezcla neopentil-alcohol y
neopentil-glicol, el carbonato de propileno, así como el CL isooctilcianobifenil. Se discute también la
existencia de posibles correlaciones empíricas entre uno de los modelos lineales con el patrón universal
para la parte de alta frecuencia de la curva de pérdidas dieléctricas de la relajación primaria para las fases
CL y OD.
En la parte final se muestra que la forma de la ecuación introducida recientemente por Mauro et al. no
permite la linearización mediante el método derivativo. A diferencia de los modelos anteriores, los
diferentes parámetros no están correlacionados con la pendiente y el origen de coordenadas de una función
lineal. Para resolver este problema, hemos introducido el concepto del espacio entálpico.
Se analiza también la existencia de cambios de comportamiento dinámicos y se aportan descripciones
cuantitativas. Se muestra también un nuevo procedimiento para detectar los cambios dinámicos de una
manera fácil, que permite incluso detectar aquéllos que son obviados mediante el método clásico de
Stickel.
|
2 |
A New Class of Solid State, Single-ion Conductors (H+ and Li+): Silicon-based Plastic CrystalsJanuary 2016 (has links)
abstract: Plastic crystals as a class are of much interest in applications as solid state electrolytes for electrochemical energy conversion devices. A subclass exhibit very high protonic conductivity and its members have been investigated as possible fuel cell electrolytes, as first demonstrated by Haile’s group in 2001 with CsHSO4. To date these have been inorganic compounds with tetrahedral oxyanions carrying one or more protons, charge-balanced by large alkali cations. Above the rotator phase transition, the HXO4- anions re-orient at a rate dependent on temperature while the centers of mass remain ordered. The transition is accompanied by a conductivity "jump" (as much as four orders of magnitude, to ~ 10 mScm-1 in the now-classic case of CsHSO4) due to mobile protons. These superprotonic plastic crystals bring a “true solid state” alternative to polymer electrolytes, operating at mild temperatures (150-200ºC) without the requirement of humidification. This work describes a new class of solid acids based on silicon, which are of general interest. Its members have extraordinary conductivities, as high as 21.5 mS/cm at room temperature, orders of magnitude above any previous reported case. Three fuel cells are demonstrated, delivering current densities as high as 225 mA/cm2 at short-circuit at 130ºC in one example and 640 mA/cm2 at 87ºC in another. The new compounds are insoluble in water, and their remarkably high conductivities over a wide temperature range allow for lower temperature operations, thus reducing the risk of hydrogen sulfide formation and dehydration reactions. Additionally, plastic crystals have highly advantageous properties that permit their application as solid state electrolytes in lithium batteries. So far only doped materials have been presented. This work presents for the first time non-doped plastic crystals in which the lithium ions are integral part of the structure, as a solid state electrolyte. The new electrolytes have conductivities of 3 to 10 mS/cm at room temperature, and in one example maintain a highly conductive state at temperatures as low as -30oC. The malleability of the materials and single ion conducting properties make these materials highly interesting candidates as a novel class of solid state lithium conductors. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2016
|
3 |
Cation and Anion Transport in a Dicationic Imidazolium-Based Plastic Crystal Ion ConductorKidd, Bryce Edwin 10 July 2013 (has links)
Here we investigate the organic ionic plastic crystal (OIPC) 1,2-bis[N-(N\'-hexylimidazolium-d2(4,5))]C2H4 2PF6- in one of its solid plastic crystal phases by means of multi-nuclear solid-state (SS) NMR and pulsed-field-gradient (PFG) NMR. We quantify distinct cation and anion diffusion coefficients as well as the diffusion activation energies (Ea) in this dicationic imidazolium-based OIPC. Our studies suggest a change in transport mechanism for the cation upon varying thermal and magnetic treatment (9.4 T), evidenced by changes in cation and anion Ea. Moreover, variable temperature 2H SSNMR lineshapes further support a change in local molecular environment upon slow cooling in B0. Additionally, we quantify the percentage of mobile anions as a function of temperature from variable temperature 19F SSNMR, where two distinct spectral features are present. We also comment on the pre-exponential factor (D0), giving insight into the number of degrees of freedom for both cation and anion as a function of thermal treatment. In conjunction with previously reported conductivity values for this class of OIPCs and the Stokes-Einstein relation, we propose that ion conduction is dominated by anion diffusion between crystallites (i.e., grain boundaries). Using our experimentally determine diffusion coefficient and previously reported PF6- hydrodynamic radius (rH), viscous (" = 4.1 Pa " s) ionic liquid (IL) is present with a cation rH of 0.34 nm. NMR measurements are very powerful in elucidating fundamental OIPC properties and allow a deeper understanding of ion transport within such materials. / Master of Science
|
4 |
Multiscale Transport and Dynamics in Ion-Dense Organic Electrolytes and Copolymer MicellesKidd, Bryce Edwin 23 September 2016 (has links)
Understanding molecular and ion dynamics in soft materials used for fuel cell, battery, and drug delivery vehicle applications on multiple time and length scales provides critical information for the development of next generation materials. In this dissertation, new insights into transport and kinetic processes such as diffusion coefficients, translational activation energies (Ea), and rate constants for molecular exchange, as well as how these processes depend on material chemistry and morphology are shown. This dissertation also aims to serve as a guide for material scientists wanting to expand their research capabilities via nuclear magnetic resonance (NMR) techniques. By employing variable temperature pulsed-field-gradient (PFG) NMR diffusometry, which can probe molecular transport over nm – μm length scales, I first explore transport and morphology on a series of ion-conducting materials: an organic ionic plastic crystal, a proton-exchange membrane, and a polymer-gel electrolyte. These studies show the dependencies of small molecule and ion transport on modulations to material parameters, including thermal or magnetic treatment, water content, and/or crosslink density. I discuss the fundamental significance of the length scale over which translational Ea reports on these systems (~ 1 nm) and the resulting implications for using the Arrhenius equation parameters to understand and rationally design new ion-conductors. Next, I describe how NMR spectroscopy can be utilized to investigate the effect of loading a small molecule into the core of a spherical block copolymer micelle (to mimic, e.g., drug loading) on the hydrodynamic radius (rH) and polymer chain dynamics. In particular, I present spin-lattice relaxation (T1) results that directly measure single chain exchange rate kexch between micelles and diffusion results that inform on the unimer exchange mechanism. These convenient NMR methods thus offer an economical alternative (or complement) to time-resolved small angle neutron scattering (TR-SANS). / Ph. D. / Lithium ion batteries, fuel cells, and drug-delivery vehicles each depend on a fundamental understanding of the interface between materials science and molecular dynamics. Optimization of such materials usually requires routine analysis through common polymer characterization techniques. The present dissertation highlights the usage of an uncommon analytical tool to the polymer science community, nuclear magnetic resonance (NMR); and how it gives unprecedented access in gauging material performance when subjected to judicious multiscale analysis. Chemical specificity, non-destructiveness, and the ability to study dynamics on multi-time and length scales are only a few of the many advantages of NMR offers over other polymer characterization techniques. Chapters 3, 4, 5, 6, and 7 investigate different classes of materials for their respective applications to better understand the aforementioned interface. These studies are intended to spark interest in new research areas while supplementing existing ones.
|
5 |
Dumbbell-shaped colloidsChu, Fangfang 10 November 2014 (has links)
In der vorliegenden Arbeit wurde das Phasenverhalten von harten Hantelteilchen (Dumbbells) als Funktion des Aspektverhältnisses (L*, der Quotient aus dem Abstand der Massenzentren zum Durchmesser der Kugel) und der Volumendichte untersucht. Bragg-Reflexe weisen darauf hin, das harte Dumbbells mit L* < 0.4 einen Phasenübergang von einer Fluid-artigen Phase zu einem plastischen Kristall zeigen. Die experimentellen Phasendiagramme bei L* ~ 0.24 und L*~ 0.30 sind vergleichbar mit Vorhersagen aus Monte Carlo-Simulationen. Rheologie Messungen zeigen, dass harte Dumbbells verschiedene Gleichgewichts- und Nichtgleichgewichtsphasen annehmen. Suspensionen von harten Dumbbells im Zweiphasenbereich zeigen ein einziges Fließgrenzen-Ereignis, wohingegen in der plastischen Kristallphase zwei Fließgrenzen-Ereignisse beobachtet werden. Diese, im Folgenden als „double yielding“ bezeichneten Ereignisse, hängen mit der Kristallisation der Suspensionen von harten Dumbbells zusammen. Die entsprechende Strukturentwicklung wurde mit rheo-SANS-Experimenten untersucht und mithilfe von BD Simulationen interpretiert. Es konnte gezeigt werden, dass die plastische Kristallphase polykristallin im Ruhezustand ist. Unter schwacher Scherung wird eine fcc-Schwerzwilling Struktur ausgebildet. Bei hoher Scherung formt sich eine teilweise orientierte Struktur aus gleitenden Schichten. Zwischen diesen beiden Strukturen existiert eine ungeordnete Übergangsphase. Die Scher-induzierte Strukturausbildung eintspricht dem „double yielding“ Ereignis der kristallinen harten Dumbells. Es wurde gezeigt, dass ein größeres L* (L* < 0.4) die Strukturentwicklung unter Scherung qualitativ nicht beeinflusst. Aufgrund verlangsamter Dynamik in der Nähe des Glasübergangs sind lediglich stärkere oder längere Oszillationen von Nöten, um Scher-induzierte Kristallisation zu erzeugen. Im zweiten Teil dieser Arbeit werden Systeme aus hohlen Kugeln und „Janus“-Dumbbells vorgestellt, die als kolloidale Modellsysteme dienen können. / In the present work the phase behaviour of hard dumbbells has been explored as a function of aspect ratio (L*, the center to center distance to the diameter of one composed sphere) and volume fractions using thermosensitive dumbbell-shaped microgels as the hard dumbbell model system. A fluid-to-plastic crystal phase transition indicated by Bragg reflections has been observed for L* < 0.4. The experimental phase diagrams at L* ~ 0.24 and L* ~ 0.30 are comparable to the theoretical prediction of the Monte Carlo simulations. Rheological measurements reveal that the hard dumbbells in the biphasic gap show the yielding behaviour with a single yielding event, while two yielding events have been observed for the plastic crystalline phase. The two yielding events, referred to as the double yielding behaviour, are proved to be related to the crystallization of hard dumbbells. The underlying structural evolution has been investigated by rheo-SANS experiments and the scattering data has been interpreted by BD simulations. It is demonstrated that the plastic crystal structure of the hard dumbbells is polycrystalline at rest, which has been induced into the twinned fcc structure at low strain, the partially oriented sliding layers at high strain and the intermediate state at the strain in-between. The shear-induced structural evolution corresponds to the double yielding events of the fully crystallized hard dumbbells. Additionally, we prove that the increase of L* (L* < 0.4) does not change the structural evolution of the sheared hard dumbbells. Only more extensive or longer oscillations are required to form the shear-induced crystal structures due to the slowdown of the dynamics in the vicinity of the glass transition. In a second part, the work of this thesis is extended to hollow systems composed of hollow spheres and hollow Janus dumbbells that can be used as model systems to probe phase behaviour of hollow capsules.
|
Page generated in 0.0857 seconds